Menu Close

Is-that-right-IF-k-1-n-n-k-n-1-k-2-so-n-is-a-prime-number-




Question Number 182934 by moh777 last updated on 17/Dec/22
        Is that right !      IF  :   Σ_(k = 1) ^n  (⌊(n/k)⌋−⌊((n−1)/k)⌋) = 2     so n is a prime number .
Isthatright!IF:nk=1(nkn1k)=2sonisaprimenumber.
Answered by dre23 last updated on 17/Dec/22
⇔∀n≥2  Σ_(k=2) ^n ([(n/k)]−[((n−1)/k)])=1 n est premiers  n=2 worcks ∀n≥3  ⇔Σ_(k=2) ^(n−1) ([(n/k)]−[((n−1)/k)])=0  f(n,k)=[(n/k)]−[((n−1)/k)]  if n is not prime ∃s∈N−{1,n} such n=sp  (n/s)=p and((n−1)/s)=p−(1/p),  [(n/k)]=p,[((n−1)/k)]=p−1  Σ_(k=2) ^(n−1) ([(n/k)]−[((n−1)/k)])=Σ_(k=2,k≠k) ^(n−1) f(n,k)+p−(p−1)≥p−(p−1)=1  ⇔Σ_(k=2) ^(n−1) f(n,k)≥1>0⇒not true  so Σ_(k=1) ^n f(n,k)=2⇒n is prime true
n2nk=2([nk][n1k])=1nestpremiersn=2worcksn3n1k=2([nk][n1k])=0f(n,k)=[nk][n1k]ifnisnotprimesN{1,n}suchn=spns=pandn1s=p1p,[nk]=p,[n1k]=p1n1k=2([nk][n1k])=n1k=2,kkf(n,k)+p(p1)p(p1)=1n1k=2f(n,k)1>0nottruesonk=1f(n,k)=2nisprimetrue

Leave a Reply

Your email address will not be published. Required fields are marked *