Question Number 88000 by jdmath last updated on 07/Apr/20
$${Is}\:{there}\:{a}\:{formula}\:{to}\:{calculate}\: \\ $$$$ \\ $$$$\underset{{i}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{{i}^{\mathrm{2}} } \\ $$$${interms}\:{of}\:{n}..? \\ $$
Commented by abdomathmax last updated on 08/Apr/20
$${i}\:{thnk}?{no}?{formulae}\:{but}\:{we}\:{can}\:{write} \\ $$$$\sum_{{i}=\mathrm{1}} ^{{n}\:} \:\frac{\mathrm{1}}{{i}^{\mathrm{2}} }\:=\sum_{{i}=\mathrm{3}{k}} \:\left(…\right)+\sum_{{i}=\mathrm{3}{k}+\mathrm{1}} \:\left(…\right)+\sum_{{i}=\mathrm{3}{k}+\mathrm{2}} \:\:\left(…\right) \\ $$$$=\sum_{{k}=\mathrm{1}} ^{\left[\frac{{n}}{\mathrm{3}}\right]} \:\frac{\mathrm{1}}{\mathrm{9}{k}^{\mathrm{2}} }\:+\sum_{{k}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{1}}{\mathrm{3}}\right]} \:\frac{\mathrm{1}}{\left(\mathrm{3}{k}+\mathrm{1}\right)^{\mathrm{2}} }\:+\sum_{{k}=\mathrm{0}} ^{\left[\frac{{n}−\mathrm{2}}{\mathrm{3}}\right]} \:\frac{\mathrm{1}}{\left(\mathrm{3}{k}+\mathrm{2}\right)^{\mathrm{2}} } \\ $$$$=…. \\ $$
Commented by jdmath last updated on 16/Apr/20
$${thank}\:{you}…{rly} \\ $$