Menu Close

Is-there-any-analytic-proof-of-the-result-sin-x-y-sin-x-cos-y-sin-y-cos-x-




Question Number 127383 by Lordose last updated on 29/Dec/20
Is there any analytic proof of the result  sin(x+y) = sin(x)cos(y) + sin(y)cos(x)
Isthereanyanalyticproofoftheresultsin(x+y)=sin(x)cos(y)+sin(y)cos(x)
Answered by bemath last updated on 29/Dec/20
Answered by liberty last updated on 29/Dec/20
sin α = sin ∠ ACB = ((AB)/(AC)) = ((AB)/(AE+EC))=((sin (α+β))/(cos β+((sin β cos α)/(sin α))))   so we have the equation ((sin (α+β))/(cos β+((sin β cos α)/(sin α)))) = sin α  then sin (α+β) = sin α(cos β+((sin β cos α)/(sin α)))                                   = sin α cos β + sin β cos α
sinα=sinACB=ABAC=ABAE+EC=sin(α+β)cosβ+sinβcosαsinαsowehavetheequationsin(α+β)cosβ+sinβcosαsinα=sinαthensin(α+β)=sinα(cosβ+sinβcosαsinα)=sinαcosβ+sinβcosα
Commented by liberty last updated on 29/Dec/20
Answered by MJS_new last updated on 29/Dec/20
sin α =((e^(iα) −e^(−iα) )/(2i))∧cos α =((e^(iα) +e^(−iα) )/2)    sin (x+y) =((e^(i(x+y)) −e^(−i(x+y)) )/(2i))=((e^(ix) e^(iy) −e^(−ix) e^(−iy) )/(2i))=       [let e^(ix) =u∧e^(iy) =v]  =((uv−(1/(uv)))/(2i))=((2uv−(2/(uv)))/(4i))=  =((2uv+(u/v)−(u/v)+(v/u)−(v/u)−(2/(uv)))/(4i))=  =((uv+(u/v)−(v/u)−(1/(uv)))/(4i))+((uv−(u/v)+(v/u)−(1/(uv)))/(4i))=  (((u−(1/u))(v+(1/v)))/(4i))+(((u+(1/u))(v−(1/v)))/(4i))=       [u=e^(ix) ∧v=e^(iy) ]  =((e^(ix) −e^(−ix) )/(2i))×((e^(iy) +e^(−iy) )/2)+((e^(ix) +e^(−ix) )/2)×((e^(iy) −e^(−iy) )/(2i))=  =sin x cos y +cos x sin y
sinα=eiαeiα2icosα=eiα+eiα2sin(x+y)=ei(x+y)ei(x+y)2i=eixeiyeixeiy2i=[leteix=ueiy=v]=uv1uv2i=2uv2uv4i==2uv+uvuv+vuvu2uv4i==uv+uvvu1uv4i+uvuv+vu1uv4i=(u1u)(v+1v)4i+(u+1u)(v1v)4i=[u=eixv=eiy]=eixeix2i×eiy+eiy2+eix+eix2×eiyeiy2i==sinxcosy+cosxsiny

Leave a Reply

Your email address will not be published. Required fields are marked *