Menu Close

is-this-true-and-is-there-a-proof-k-N-k-gt-1-n-1-k-2-1-k-n-n-1-k-2-1-k-n-1-2-




Question Number 149342 by MJS_new last updated on 04/Aug/21
is this true and is there a proof?  ∀k∈N∣k>1  ((Σ_(n=1) ^(k^2 −1) (√(k+(√n))))/(Σ_(n=1) ^(k^2 −1) (√(k−(√n)))))=1+(√2)
isthistrueandisthereaproof?kNk>1k21n=1k+nk21n=1kn=1+2
Commented by mr W last updated on 04/Aug/21
yes, it′s true.
yes,itstrue.
Answered by mr W last updated on 04/Aug/21
proof:  ((√(k+(√n)))−(√(k−(√n))))^2 =2(k−(√(k^2 −n)))  (√(k+(√n)))−(√(k−(√n)))=(√2)×(√(k−(√(k^2 −n))))  Σ_(n=1) ^(k^2 −1) (√(k+(√n)))−Σ_(n=1) ^(k^2 −1) (√(k−(√n)))=(√2)×Σ_(n=k^2 −1) ^1 (√(k−(√(k^2 −n))))  Σ_(n=1) ^(k^2 −1) (√(k+(√n)))−Σ_(n=1) ^(k^2 −1) (√(k−(√n)))=(√2)×Σ_(n=1) ^(k^2 −1) (√(k−(√n)))  Σ_(n=1) ^(k^2 −1) (√(k+(√n)))=((√2)+1)Σ_(n=1) ^(k^2 −1) (√(k−(√n)))  ⇒((Σ_(n=1) ^(k^2 −1) (√(k+(√n))))/(Σ_(n=1) ^(k^2 −1) (√(k−(√n)))))=(√2)+1
proof:(k+nkn)2=2(kk2n)k+nkn=2×kk2nk21n=1k+nk21n=1kn=2×1n=k21kk2nk21n=1k+nk21n=1kn=2×k21n=1knk21n=1k+n=(2+1)k21n=1knk21n=1k+nk21n=1kn=2+1
Commented by MJS_new last updated on 04/Aug/21
thank you!
thankyou!
Commented by Tawa11 last updated on 06/Nov/21
great
great

Leave a Reply

Your email address will not be published. Required fields are marked *