Menu Close

Is-this-true-for-complex-number-4Re-z-1-z-2-z-1-z-2-2-z-1-z-2-2-




Question Number 182011 by mathocean1 last updated on 03/Dec/22
Is this true for complex number:  4Re(z_1 z_2 ^(−) )=∣z_1 +z_2 ^(−) ∣^2 −∣z_1 −z_2 ^(−) ∣^2
Isthistrueforcomplexnumber:4Re(z1z2)=∣z1+z22z1z22
Commented by Frix last updated on 03/Dec/22
The question is strange. If you only use  z_2 ^−  you could instead use z_3  because it will  make no difference.  Anyway as posted it′s wrong.
Thequestionisstrange.Ifyouonlyusez2youcouldinsteadusez3becauseitwillmakenodifference.Anywayasposteditswrong.
Answered by alephzero last updated on 03/Dec/22
z_1  = a+bi  z_2  = c+di  z_2 ^�  = c−di  z_1 z_2 ^�  = (a+bi)(c−di) =  = a(c−di)+bi(c−di) =  = ac−adi+bci+bd =  = ac+bd−adi+bci =  = ac+bd−i(ad+bc)  4Re(z_1 z_2 ^� ) = 4(ac+bd)     ∣z_1 +z_2 ^� ∣^2 −∣z_1 −z_2 ^� ∣^2  =  = ∣a+bi+c−di∣^2 −∣a+bi−c+di∣^2  =  = ∣a+c+i(b−d)∣^2 −∣a−c+i(b+d)∣^2  =  ((√((a+c)^2 +(b−d)^2 )))^2 −((√((a−c)^2 +(b+d)^2 )))^2   = (a+c)^2 +(b−d)^2 −(a−c)^2 −(b+d)^2  =  = a^2 +2ac+c^2 +b^2 −2bd+d^2 −a^2 +2ac−c^2 −b^2 −2bd−d^2  =  = 2ac+2ac = 4ac ≠ 4(ac+bd)  ⇒this is false
z1=a+biz2=c+diz¯2=cdiz1z¯2=(a+bi)(cdi)==a(cdi)+bi(cdi)==acadi+bci+bd==ac+bdadi+bci==ac+bdi(ad+bc)4Re(z1z¯2)=4(ac+bd)z1+z¯22z1z¯22==a+bi+cdi2a+bic+di2==a+c+i(bd)2ac+i(b+d)2=((a+c)2+(bd)2)2((ac)2+(b+d)2)2=(a+c)2+(bd)2(ac)2(b+d)2==a2+2ac+c2+b22bd+d2a2+2acc2b22bdd2==2ac+2ac=4ac4(ac+bd)thisisfalse
Commented by alephzero last updated on 03/Dec/22
Sorry, I′ve corrected now, thank you!
Sorry,Ivecorrectednow,thankyou!
Commented by Frix last updated on 03/Dec/22
Error of sign:  = (a+c)^2 +(b−d)^2 −(a−c)^2 −^! (b+d)^2  =
Errorofsign:=(a+c)2+(bd)2(ac)2!(b+d)2=

Leave a Reply

Your email address will not be published. Required fields are marked *