Menu Close

It-is-given-a-family-of-open-interval-set-U-r-r-Q-of-R-that-satifies-condition-r-Q-r-U-r-Prove-that-there-exists-a-family-set-U-r-r-Q-which-not-cover-R-or-gt-0-r-Q-U-r-




Question Number 182241 by Matica last updated on 06/Dec/22
 It is given a family of open interval set (U_r )_(r∈Q)  of R  that satifies condition ∀r∈Q, r∈U_(r ) .  Prove that there exists a family set (U_r )_(r∈Q) which not cover R   or ∀ε>0,  λ(∪_(r∈Q)  U_r  )≤ ε .
$$\:\mathrm{It}\:\mathrm{is}\:\mathrm{given}\:\mathrm{a}\:\mathrm{family}\:\mathrm{of}\:\mathrm{open}\:\mathrm{interval}\:\mathrm{set}\:\left({U}_{{r}} \right)_{{r}\in\mathbb{Q}} \:\mathrm{of}\:\mathbb{R} \\ $$$$\mathrm{that}\:\mathrm{satifies}\:\mathrm{condition}\:\forall{r}\in\mathbb{Q},\:{r}\in{U}_{{r}\:} . \\ $$$$\mathrm{Prove}\:\mathrm{that}\:\mathrm{there}\:\mathrm{exists}\:\mathrm{a}\:\mathrm{family}\:\mathrm{set}\:\left({U}_{{r}} \right)_{{r}\in\mathbb{Q}} \mathrm{which}\:\mathrm{not}\:\mathrm{cover}\:\mathbb{R}\: \\ $$$$\mathrm{or}\:\forall\varepsilon>\mathrm{0},\:\:\lambda\left(\underset{{r}\in\mathbb{Q}} {\cup}\:{U}_{{r}} \:\right)\leqslant\:\varepsilon\:. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *