Menu Close

It-is-given-f-x-1-x-n-n-N-Find-f-0-f-0-f-0-2-f-0-3-f-n-0-n-




Question Number 183459 by Matica last updated on 26/Dec/22
  It is given f(x)=(1+x)^n  , n∈N. Find    f(0)+f^′ (0)+((f^(′′) (0))/(2!))+((f′′′(0))/(3!))+...+((f^((n)) (0))/(n!))  .
Itisgivenf(x)=(1+x)n,nN.Findf(0)+f(0)+f(0)2!+f(0)3!++f(n)(0)n!.
Answered by mahdipoor last updated on 26/Dec/22
=1+n+((n×(n−1))/2)+((n×(n−1)×(n−2))/(3!))+...  ((n!)/(n!))=(_0 ^n )+(_1 ^n )+...(_n ^n )=2^n
=1+n+n×(n1)2+n×(n1)×(n2)3!+n!n!=(0n)+(1n)+(nn)=2n
Commented by Matica last updated on 26/Dec/22
please more detail
pleasemoredetail
Commented by mahdipoor last updated on 26/Dec/22
f(0)=(1+0)^n =1=(_0 ^n )  f^′ (0)=n(1+0)^(n−1) =n=(_1 ^n )  (1/(2!))f^(′′) (0)=((n(n−1))/(2!))(1+0)^(n−2) =(_2 ^n )  ....  (1/(n!))f^n (0)=((n!)/(n!))(1+0)^(n−n) =(_n ^n )  ⇒A=(_0 ^n )+(_1 ^n )+...(_n ^n )  B=(a+b)^n =(_0 ^n )a^n b^0 +(_1 ^n )a^(n−1) b^1 +(_2 ^n )a^(n−2) b^2 +...  +(_n ^n )a^(n−n) b^n    ⇒a=b=1 ⇒A=B=(1+1)^n =2^n
f(0)=(1+0)n=1=(0n)f(0)=n(1+0)n1=n=(1n)12!f(0)=n(n1)2!(1+0)n2=(2n).1n!fn(0)=n!n!(1+0)nn=(nn)A=(0n)+(1n)+(nn)B=(a+b)n=(0n)anb0+(1n)an1b1+(2n)an2b2++(nn)annbna=b=1A=B=(1+1)n=2n
Commented by Matica last updated on 26/Dec/22
Thank you !
Thankyou!
Answered by mr W last updated on 26/Dec/22
f(x)=(1+x)^n =C_0 ^n +C_1 ^n x+C_2 ^n x^2 +...+C_n ^n x^n     (i)  on the other side acc. taylor series:  f(x)=f(0)+f′(0)x+((f′′(0))/(2!))x^2 +((f′′′(0))/(3!))x^3 +...+((f^((n)) (0))/(n!))x^n +((f^((n+1)) (0))/((n+1)!))x^(n+1) +...    (ii)  compare (i) and (ii):  ((f^((k)) (0))/(k!))=C_k ^n  for 0≤k≤n and  ((f^((k)) (0))/(k!))=0 for k≥n+1  ⇒f(0)+f′(0)x+((f′′(0))/(2!))x^2 +((f′′′(0))/(3!))x^3 +...+((f^((n)) (0))/(n!))x^n =(1+x)^n   set x=1,  ⇒f(0)+f′(0)+((f′′(0))/(2!))+((f′′′(0))/(3!))+...+((f^((n)) (0))/(n!))=(1+1)^n =2^n  ✓
f(x)=(1+x)n=C0n+C1nx+C2nx2++Cnnxn(i)ontheothersideacc.taylorseries:f(x)=f(0)+f(0)x+f(0)2!x2+f(0)3!x3++f(n)(0)n!xn+f(n+1)(0)(n+1)!xn+1+(ii)compare(i)and(ii):f(k)(0)k!=Cknfor0knandf(k)(0)k!=0forkn+1f(0)+f(0)x+f(0)2!x2+f(0)3!x3++f(n)(0)n!xn=(1+x)nsetx=1,f(0)+f(0)+f(0)2!+f(0)3!++f(n)(0)n!=(1+1)n=2n
Commented by Matica last updated on 26/Dec/22
Thank you!
Thankyou!

Leave a Reply

Your email address will not be published. Required fields are marked *