Menu Close

it-is-given-that-r-1-20-f-r-10-200-and-r-1-20-f-r-10-2-2800-find-the-value-of-r-1-20-f-r-2-




Question Number 33153 by Rio Mike last updated on 11/Apr/18
it is given that    Σ_(r=1 ) ^(20) [f(r)−10]=200  and   Σ_(r=1) ^(20) [f(r)−10]^2 =2800  find the value of  Σ_(r=1) ^(20) [f(r)]^2
$${it}\:{is}\:{given}\:{that} \\ $$$$\:\:\underset{{r}=\mathrm{1}\:} {\overset{\mathrm{20}} {\sum}}\left[{f}\left({r}\right)−\mathrm{10}\right]=\mathrm{200} \\ $$$${and} \\ $$$$\:\underset{{r}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\left[{f}\left({r}\right)−\mathrm{10}\right]^{\mathrm{2}} =\mathrm{2800} \\ $$$${find}\:{the}\:{value}\:{of} \\ $$$$\underset{{r}=\mathrm{1}} {\overset{\mathrm{20}} {\sum}}\left[{f}\left({r}\right)\right]^{\mathrm{2}} \\ $$$$ \\ $$
Commented by prof Abdo imad last updated on 11/Apr/18
we have Σ_(r=1) ^(20) (f(r)−10) =200 ⇒  Σ_(r=1) ^(20)  f(r) −200=200 ⇒ Σ_(r=1) ^(20)  f(r) =400 also  Σ_(r=1) ^(20)  ( f^2 (r) −20f(r) +100) =2800 ⇒  Σ_(r=1) ^(20)  (f(r))^2  −20 Σ_(r=1) ^(20) f(r) +2000 =2800 ⇒  Σ_(r=1) ^(20)  (f(r))^2  = 800 +20 Σ_(r=1) ^(20) f(r)  =800 +20 ×400 = 8800 ⇒  Σ_(r=1) ^(20)  (f(r))^2   =8800.
$${we}\:{have}\:\sum_{{r}=\mathrm{1}} ^{\mathrm{20}} \left({f}\left({r}\right)−\mathrm{10}\right)\:=\mathrm{200}\:\Rightarrow \\ $$$$\sum_{{r}=\mathrm{1}} ^{\mathrm{20}} \:{f}\left({r}\right)\:−\mathrm{200}=\mathrm{200}\:\Rightarrow\:\sum_{{r}=\mathrm{1}} ^{\mathrm{20}} \:{f}\left({r}\right)\:=\mathrm{400}\:{also} \\ $$$$\sum_{{r}=\mathrm{1}} ^{\mathrm{20}} \:\left(\:{f}^{\mathrm{2}} \left({r}\right)\:−\mathrm{20}{f}\left({r}\right)\:+\mathrm{100}\right)\:=\mathrm{2800}\:\Rightarrow \\ $$$$\sum_{{r}=\mathrm{1}} ^{\mathrm{20}} \:\left({f}\left({r}\right)\right)^{\mathrm{2}} \:−\mathrm{20}\:\sum_{{r}=\mathrm{1}} ^{\mathrm{20}} {f}\left({r}\right)\:+\mathrm{2000}\:=\mathrm{2800}\:\Rightarrow \\ $$$$\sum_{{r}=\mathrm{1}} ^{\mathrm{20}} \:\left({f}\left({r}\right)\right)^{\mathrm{2}} \:=\:\mathrm{800}\:+\mathrm{20}\:\sum_{{r}=\mathrm{1}} ^{\mathrm{20}} {f}\left({r}\right) \\ $$$$=\mathrm{800}\:+\mathrm{20}\:×\mathrm{400}\:=\:\mathrm{8800}\:\Rightarrow \\ $$$$\sum_{{r}=\mathrm{1}} ^{\mathrm{20}} \:\left({f}\left({r}\right)\right)^{\mathrm{2}} \:\:=\mathrm{8800}. \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *