Menu Close

It-is-known-that-5pi-lt-lt-13pi-2-cos-1-4-calculate-sin2-




Question Number 56498 by kelly33 last updated on 17/Mar/19
It is known that 5π<α<((13π)/2).  cosα=−(1/4)  calculate  sin2α
Itisknownthat5π<α<13π2.cosα=14calculatesin2α
Commented by kelly33 last updated on 17/Mar/19
please help me
pleasehelpme
Answered by tanmay.chaudhury50@gmail.com last updated on 17/Mar/19
sin2α=2sinαcosα    ignoring sign           sinα=((√(15))/4)  now   5π<α<((13π)/2)  so      10π<2α<13π            (5×2π)<2α<(6×2π+π)  so 2α lies in second quadrant  so sin2α=2×((√(15))/4)×(1/4)=((√(15))/8)  i think question itself has some error..     it shoud be 6π<α<((13π)/2)
sin2α=2sinαcosαignoringsignsinα=154now5π<α<13π2so10π<2α<13π(5×2π)<2α<(6×2π+π)so2αliesinsecondquadrantsosin2α=2×154×14=158ithinkquestionitselfhassomeerror..itshoudbe6π<α<13π2
Commented by MJS last updated on 17/Mar/19
cos α =−(1/4) ⇒ α=2πn±((π/2)+arcsin (1/4))  5π<α<((13π)/2) ⇒ α=((11π)/2)−arcsin (1/4)  sin 2α =((√(15))/8)
cosα=14α=2πn±(π2+arcsin14)5π<α<13π2α=11π2arcsin14sin2α=158
Commented by kelly33 last updated on 18/Mar/19
α=2πn±((π/2)+arcsin(1/4))  where did this formula come from?
α=2πn±(π2+arcsin14)wheredidthisformulacomefrom?
Commented by MJS last updated on 19/Mar/19
arccos (−x) =±((π/2)+arcsin x)  this should be clear...  but cos α has a period of 2π  cos α =−(1/4)  cos (α+2πn) =−(1/4); n∈Z  α+2πn=arccos (−(1/4))  α+2πn=±((π/2)+arcsin (1/4))  α=−2πn±((π/2)+arcsin (1/4)) but n∈Z ⇒  ⇒ we can write  α=2πn±((π/2)+arcsin (1/4))
arccos(x)=±(π2+arcsinx)thisshouldbeclearbutcosαhasaperiodof2πcosα=14cos(α+2πn)=14;nZα+2πn=arccos(14)α+2πn=±(π2+arcsin14)α=2πn±(π2+arcsin14)butnZwecanwriteα=2πn±(π2+arcsin14)
Commented by kelly33 last updated on 19/Mar/19
thank sr
thanksr
Commented by kelly33 last updated on 19/Mar/19
Sorry, you can explain how it′s here...  5π<α<((13π)/2) ⇒ α=((11π)/2)−arcsin (1/4)  come to the final result?    And where this valued has emerged?  α=((11π)/2)−arcsin (1/4)
Sorry,youcanexplainhowitshere5π<α<13π2α=11π2arcsin14cometothefinalresult?Andwherethisvaluedhasemerged?α=11π2arcsin14
Commented by kelly33 last updated on 19/Mar/19
Sorry, you can explain how it′s here...  5π<α<((13π)/2) ⇒ α=((11π)/2)−arcsin (1/4)  come to the final result?    And where this valued has emerged?  α=((11π)/2)−arcsin (1/4)
Sorry,youcanexplainhowitshere5π<α<13π2α=11π2arcsin14cometothefinalresult?Andwherethisvaluedhasemerged?α=11π2arcsin14
Commented by MJS last updated on 19/Mar/19
general result:  α=2πn±((π/2)+arcsin (1/4))  now we must test which n∈Z makes α fit  into the interval.  α_n ^− =2πn−((π/2)+arcsin (1/4))  α_n ^+ =2πn+((π/2)+arcsin (1/4))  ]5π;((13)/2)π[ ≈ ]15.708; 20.420[  α_3 ^− ≈17.026 is the only one to fit  ⇒ α=6π−((π/2)+arcsin (1/4))=((11π)/2)−arcsin (1/4)  sin 2α =sin (11π−2arcsin (1/4)) =       [because of period 2π: sin (11π−θ) =sin θ]  =sin (2arcsin (1/4)) =       [sin 2θ =2sin θ cos θ]  =2(sin arcsin (1/4))(cos arcsin (1/4))=  =2×(1/4)×cos arcsin (1/4) =       [cos arcsin t =sin arcsin t =(√(1−t^2 ))]  =(1/2)(√(1−(1/(16))))=((√(15))/8)
generalresult:α=2πn±(π2+arcsin14)nowwemusttestwhichnZmakesαfitintotheinterval.αn=2πn(π2+arcsin14)αn+=2πn+(π2+arcsin14)]5π;132π[]15.708;20.420[α317.026istheonlyonetofitα=6π(π2+arcsin14)=11π2arcsin14sin2α=sin(11π2arcsin14)=[becauseofperiod2π:sin(11πθ)=sinθ]=sin(2arcsin14)=[sin2θ=2sinθcosθ]=2(sinarcsin14)(cosarcsin14)==2×14×cosarcsin14=[cosarcsint=sinarcsint=1t2]=121116=158

Leave a Reply

Your email address will not be published. Required fields are marked *