Question Number 175387 by cortano1 last updated on 29/Aug/22
$$\:{J}=\underset{\mathrm{0}} {\overset{\pi/\mathrm{2}} {\int}}\:\frac{\mathrm{sin}\:{x}}{\mathrm{1}+\mathrm{sin}\:{x}+\mathrm{cos}\:{x}}\:{dx} \\ $$
Commented by infinityaction last updated on 29/Aug/22
$$\:\:\:\:{J}\:\:\:=\:\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{2sin}\frac{{x}}{\mathrm{2}}\mathrm{cos}\:\frac{{x}}{\mathrm{2}}\:}{\mathrm{2sin}\frac{{x}}{\mathrm{2}}\:\mathrm{cos}\frac{{x}}{\mathrm{2}}\:+\mathrm{2cos}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}\:}{dx} \\ $$$$\:{J}\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}\:} \frac{\left(\mathrm{sin}\frac{{x}}{\mathrm{2}}+\mathrm{cos}\frac{{x}}{\mathrm{2}}\right)\:−\left(\mathrm{cos}\frac{{x}}{\mathrm{2}}−\:\mathrm{sin}\frac{{x}}{\mathrm{2}}\right)\:\:}{\mathrm{sin}\frac{{x}}{\mathrm{2}}\:+\mathrm{cos}\frac{{x}}{\mathrm{2}}\:}{dx} \\ $$$$\:\:{J}\:\:\:\:\:\:=\:\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} {dx}\:−\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{\mathrm{cos}\frac{{x}}{\mathrm{2}}−\mathrm{sin}\frac{{x}}{\mathrm{2}}\:\:}{\mathrm{sin}\frac{{x}}{\mathrm{2}}+\mathrm{cos}\frac{{x}}{\mathrm{2}}\:\:}{dx}\: \\ $$$$\:\:\:\:{J}\:\:\:\:\:=\:\frac{\pi}{\mathrm{4}}\:−\:\left[\mathrm{log}\left(\mathrm{sin}\frac{{x}}{\mathrm{2}}\:+\:\mathrm{cos}\frac{{x}}{\mathrm{2}}\right)\right]_{\mathrm{0}} ^{\pi/\mathrm{2}} \\ $$$$\:\:\:\:\:{J}\:\:=\:\:\frac{\pi}{\mathrm{4}}\:−\:\mathrm{log}\left(\sqrt{\mathrm{2}}\right)\:\:\:\:\: \\ $$
Answered by som(math1967) last updated on 29/Aug/22
$$\mathrm{2}{J}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {dx}\:−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{1}+{sinx}+{cosx}} \\ $$$$\mathrm{2}{J}=\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} {dx}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{dx}}{\mathrm{1}+\mathrm{2}{sin}\frac{{x}}{\mathrm{2}}{cos}\frac{{x}}{\mathrm{2}}+\mathrm{1}−\mathrm{2}{sin}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}} \\ $$$$\mathrm{2}{J}=\:{x}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}{dx}}{\mathrm{2}{sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}+\mathrm{2}{tan}\frac{{x}}{\mathrm{2}}−\mathrm{2}{tan}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}} \\ $$$$\mathrm{2}{J}={x}−\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{{sec}^{\mathrm{2}} \frac{{x}}{\mathrm{2}}{dx}}{\mathrm{2}\left(\mathrm{1}+{tan}\frac{{x}}{\mathrm{2}}\right)} \\ $$$$\mathrm{2}{J}=\left[{x}+{ln}\left(\mathrm{1}+{tan}\frac{{x}}{\mathrm{2}}\right)\right]_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \\ $$$$\mathrm{2}{J}=\frac{\pi}{\mathrm{2}}\:−{ln}\mathrm{2} \\ $$$${J}=\frac{\pi}{\mathrm{4}}\:−{ln}\sqrt{\mathrm{2}} \\ $$
Commented by cortano1 last updated on 29/Aug/22
$${yes}\:{sir} \\ $$
Answered by Ramanathan last updated on 29/Aug/22
$$\underset{\mathrm{4}} {\pi} \\ $$$$\frac{\pi}{\mathrm{4}} \\ $$$$ \\ $$