Question Number 190449 by MathsFan last updated on 03/Apr/23
$$ \\ $$John stands at 10m from a mango tree while Philip stands between John and the Philip. The angle of elevation from John and Philip is 55º and 70º respectively. If John is 1.7m tall and Philip is 1.5m tall, find the minimum length of stick they will each need to touch the mango from their position.
Help Please
Help Please
Answered by a.lgnaoui last updated on 14/Apr/23
$${Donnes}: \\ $$$${AC}=\mathrm{1},\mathrm{7}{m}\:\:\:\:\:{EF}=\mathrm{1},\mathrm{5}{m}\:\:{CD}=\mathrm{10}\: \\ $$$$\measuredangle{BAH}=\mathrm{55}°\:\:\:\measuredangle{DED}=\mathrm{70}° \\ $$$${BD}={BH}+{HD}={AC}+{HB} \\ $$$$\mathrm{tan}\:\:\mathrm{55}=\frac{{HB}}{\mathrm{10}}\Rightarrow{HB}=\mathrm{10tan}\:\mathrm{55} \\ $$$$\Rightarrow{BD}=\mathrm{10tan}\:\mathrm{55}+\mathrm{1},\mathrm{7}=\mathrm{15},\mathrm{9}{m} \\ $$$$\:\mathrm{2}\bullet{length}\:{of}\:{stick}\:{distant}\:{from} \\ $$$$\:{position}\:{C}\:{for}\:{John}\:{to}\:{touch}\:{tree}\:{is}:\left({BC}\right) \\ $$$$\:{BC}=\sqrt{{CD}^{\mathrm{2}} +{BD}^{\mathrm{2}} } \\ $$$$ \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{BC}}=\sqrt{\mathrm{10}^{\mathrm{2}} +\mathrm{15},\mathrm{9}^{\mathrm{2}} \:}\:=\mathrm{18},\mathrm{78}{m} \\ $$$$ \\ $$$$\:\mathrm{2}\bullet{the}\:{length}\:{of}\:{stik}\:{from}\:{position} \\ $$$$\:\:{of}\:{Philip}\:\:{to}\:{touch}\:\:{tree}\:{is}\:\left({BE}\right) \\ $$$$\:\:{BE}^{\mathrm{2}} ={DE}^{\mathrm{2}} +{BD}^{\mathrm{2}} \:\:;\:\frac{{DE}}{{BE}}=\mathrm{cos}\:\mathrm{70}\Rightarrow{DE}={BE}\mathrm{cos}\:\mathrm{70} \\ $$$$\:{BE}^{\mathrm{2}} =\left({BE}\mathrm{cos}\:\mathrm{70}\right)^{\mathrm{2}} +{BD}^{\mathrm{2}} \\ $$$$\:{BE}^{\mathrm{2}} \mathrm{sin}^{\mathrm{2}} \mathrm{70}\:={BD}^{\mathrm{2}} \\ $$$$\:\:{BE}=\frac{{BD}}{\mathrm{sin}\:\mathrm{70}}\:\:\:\:\:\:\:\:\:\:\:\boldsymbol{{BE}}=\mathrm{19},\mathrm{98}{m} \\ $$$$\left({suite}\::\:{justification}\:{donnes}\:\lambda\right)\: \\ $$$$\mathrm{tan}\:\alpha=\frac{{BD}}{{CD}}=\frac{\mathrm{15},\mathrm{9}}{\mathrm{10}}=\mathrm{1},\mathrm{6} \\ $$$$\alpha=\mathrm{58}\:\:\:\:\beta=\mathrm{110}\Rightarrow\measuredangle{CBE}=\mathrm{12} \\ $$$$\Rightarrow\lambda=\measuredangle{BED}=\mathrm{58}+\mathrm{12}=\mathrm{70} \\ $$
Commented by a.lgnaoui last updated on 04/Apr/23