Menu Close

JS-dx-x-8-x-2-1-




Question Number 108325 by john santu last updated on 16/Aug/20
   ((⊸JS⊸)/(−−−−))  ∫ (dx/(x^8 (x^2 +1))) = ?
JSdxx8(x2+1)=?
Commented by john santu last updated on 16/Aug/20
   ((⊸JS⊸)/(______))  ∫ (dx/(x^8 (x^2 +1))) = ∫((1/(x^2 +1))−(1/x^2 )+(1/x^4 )−(1/x^6 )+(1/x^8 ))dx  = tan^(−1) (x)+(1/x)−(1/(3x^3 ))+(1/(5x^5 ))−(1/(7x^7 )) + c
JS______dxx8(x2+1)=(1x2+11x2+1x41x6+1x8)dx=tan1(x)+1x13x3+15x517x7+c

Leave a Reply

Your email address will not be published. Required fields are marked *