Menu Close

JS-If-lim-x-a-x-2-2-ax-3a-2-x-a-P-with-a-gt-0-then-the-value-of-lim-x-a-2x-2-ax-a-2-x-a-is-a-3P-4-a-b-3P-8-a-c-8




Question Number 110086 by john santu last updated on 27/Aug/20
  ((♠JS♠)/(★■.★))  If lim_(x→a) ((x^2 +2∣ax∣−3a^2 )/( (√x)−(√a) )) = P , with a>0  then the value of lim_(x→a) ((2x^2 −∣ax∣−a^2 )/(x−a)) is  ___   (a) ((3P)/(4(√a)))      (b) ((3P)/(8(√a)))     (c) ((8P)/(3(√a)))    (d) ((4P)/(3(√a) ))    (e) ((3P)/(8a))
$$\:\:\frac{\spadesuit{JS}\spadesuit}{\bigstar\blacksquare.\bigstar} \\ $$$${If}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{{x}^{\mathrm{2}} +\mathrm{2}\mid{ax}\mid−\mathrm{3}{a}^{\mathrm{2}} }{\:\sqrt{{x}}−\sqrt{{a}}\:}\:=\:{P}\:,\:{with}\:{a}>\mathrm{0} \\ $$$${then}\:{the}\:{value}\:{of}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\frac{\mathrm{2}{x}^{\mathrm{2}} −\mid{ax}\mid−{a}^{\mathrm{2}} }{{x}−{a}}\:{is} \\ $$$$\_\_\_ \\ $$$$\:\left({a}\right)\:\frac{\mathrm{3}{P}}{\mathrm{4}\sqrt{{a}}}\:\:\:\:\:\:\left({b}\right)\:\frac{\mathrm{3}{P}}{\mathrm{8}\sqrt{{a}}}\:\:\:\:\:\left({c}\right)\:\frac{\mathrm{8}{P}}{\mathrm{3}\sqrt{{a}}} \\ $$$$\:\:\left({d}\right)\:\frac{\mathrm{4}{P}}{\mathrm{3}\sqrt{{a}}\:}\:\:\:\:\left({e}\right)\:\frac{\mathrm{3}{P}}{\mathrm{8}{a}} \\ $$
Answered by bemath last updated on 27/Aug/20
Commented by john santu last updated on 27/Aug/20
great..
$${great}.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *