Menu Close

JS-js-Given-a-matrix-A-3-2-5-4-and-A-2-A-2I-0-where-is-a-constant-I-1-0-0-1-If-B-3-2-5-1-then-A-1-B-




Question Number 108059 by john santu last updated on 14/Aug/20
   ((♥JS♥)/(°js°))  Given a matrix A= (((   3       2)),((−5   −4)) )  and A^2 +♭A−2I=0 where ♭ is a  constant , I= (((1   0)),((0   1)) ). If B =   (((−3♭      2)),((   5♭    −1)) ) , then A^(−1) B =
JS°js°GivenamatrixA=(3254)andA2+A2I=0whereisaconstant,I=(1001).IfB=(3251),thenA1B=
Answered by bemath last updated on 14/Aug/20
   ((⋋BeMath⋌)/⋎)  since ∣A∣ = −12+10=−2=−2∣I∣  then ♭ = −trace (A)=1 , so the equation becomes  A^2 +A=2I →2I=A(A+I)  by Cayley−Hamilton theorem   2A^(−1) =A+I ; A^(−1) =(1/2)(A+I)  A^(−1) =(1/2) (((    4       2)),((−5    −3)) ) and B= ((( −3      2)),((     5   −1)) )  therefore A^(−1) B=(1/2) (((−2        6)),((  0     −7)) )                 =  (((−1          3)),((   0      −(7/2))) )
BeMathsinceA=12+10=2=2Ithen=trace(A)=1,sotheequationbecomesA2+A=2I2I=A(A+I)byCayleyHamiltontheorem2A1=A+I;A1=12(A+I)A1=12(4253)andB=(3251)thereforeA1B=12(2607)=(13072)
Commented by bemath last updated on 14/Aug/20
santuyy
santuyy

Leave a Reply

Your email address will not be published. Required fields are marked *