Menu Close

JS-lim-x-0-x-tan-x-sin-2x-cos-2x-1-




Question Number 107871 by john santu last updated on 13/Aug/20
       ((✓JS✓)/♥)     lim_(x→0)  (√((x tan x)/(sin 2x−cos 2x +1))) ?
JSlimx0xtanxsin2xcos2x+1?
Commented by bemath last updated on 13/Aug/20
Answered by hgrocks last updated on 13/Aug/20
  L^2  = lim_(x→0 ) ((x tanx)/(2sinx.cosx + 2sin^2 x))       = (lim_(x→0) ((xtanx)/(2sinx)) ). (lim_(x→0 ) (1/(cosx + sinx)))       = lim_(x→0)  (x/2).((tanx)/x).(x/(sinx))  (Note : The Function Is not defined as x→0^− )  So Only R.H.L exists  L = lim_(x→0^+ ) (√L^2 ) = 0  ★hg★
L2=limx0xtanx2sinx.cosx+2sin2x=(limx0xtanx2sinx).(limx01cosx+sinx)=limx0x2.tanxx.xsinx(Note:TheFunctionIsnotdefinedasx0)SoOnlyR.H.LexistsL=limx0+L2=0hg
Commented by bemath last updated on 13/Aug/20
limit exist sir. the result 0. it correct
limitexistsir.theresult0.itcorrect

Leave a Reply

Your email address will not be published. Required fields are marked *