Menu Close

JS-lim-x-1-x-2-1-1-x-x-1-




Question Number 106883 by john santu last updated on 07/Aug/20
       ◊JS⧫  lim_(x→−1)  (((√(x^2 −1))+1−(√(−x)))/( (√(x+1)))) ?
JSlimx1x21+1xx+1?
Answered by bemath last updated on 07/Aug/20
       @bemath@  lim_(x→−1) (((√(x+1)) (√(x−1))+1−(√(−x)))/( (√(x+1)))) =  lim_(x→−1)  (√(x−1)) + ((1−(√(−x)))/( (√(x+1)))) ×((1+(√(−x)))/(1+(√(−x)))) =  lim_(x→−1) (√(x−1)) + ((1+x)/( (√(x+1)) (1+(√(−x)))))=  lim_(x→−1) ((√(x−1)) + ((√(x+1))/(1+(√(−x)))))=i(√2) ?
@bemath@limx1x+1x1+1xx+1=limx1x1+1xx+1×1+x1+x=limx1x1+1+xx+1(1+x)=limx1(x1+x+11+x)=i2?
Answered by Dwaipayan Shikari last updated on 07/Aug/20
lim_(x→−1) (√(x−1)) +((1−(√(−x)))/( (√(x+1))))  lim_(x→−1) i(√2)   +((1+x)/( (√(x+1)))).(1/(1+(√x)))=lim_(x→−1)  i(√2)  +((√(x+1))/(1+(√x)))=i(√2)
limx1x1+1xx+1limx1i2+1+xx+1.11+x=limx1i2+x+11+x=i2

Leave a Reply

Your email address will not be published. Required fields are marked *