Menu Close

Just-for-fun-Prove-that-there-are-no-real-numbers-A-and-B-that-satisfy-sinA-2-sinB-




Question Number 18015 by alex041103 last updated on 13/Jul/17
Just for fun  Prove that there are no real numbers A and B that  satisfy   sinA=(2/(sinB))
JustforfunProvethattherearenorealnumbersAandBthatsatisfysinA=2sinB
Commented by alex041103 last updated on 13/Jul/17
if you want you can generalize it   for complex numbers and show that  if A,B∈C there are such numbers  which sitisfy this
ifyouwantyoucangeneralizeitforcomplexnumbersandshowthatifA,BCtherearesuchnumberswhichsitisfythis
Answered by Tinkutara last updated on 13/Jul/17
LHS ∈ [−1, 1] but  RHS ∈ (−∞, −2] ∪ [2, ∞) hence there  is no solution in real numbers.
LHS[1,1]butRHS(,2][2,)hencethereisnosolutioninrealnumbers.
Commented by alex041103 last updated on 14/Jul/17
What about the complex numbers?
Whataboutthecomplexnumbers?
Commented by alex041103 last updated on 14/Jul/17
yess
yess
Commented by alex041103 last updated on 14/Jul/17
for complex numbers i′ll post a solution  after 1.5 hours
forcomplexnumbersillpostasolutionafter1.5hours
Answered by alex041103 last updated on 14/Jul/17
    Tinkutara did a nice proof for the  case where A,B∈R  But what about the case where  A,B∈C (complex numbers)  We know that for z∈C, sin z ∈(−∞,∞)  So clearly there are solutions.  In fact there are infinate number of solutions.   We know that for z∈C  (1) e^(iz) =cos z + isin z (Euler′s formula)  ⇒e^(i(−z)) =cos z−isin z  or  (2)  −e^(−iz) =−cos z + isin z  Then we add (1) and (2)  2isin z = e^(iz)  − e^(−iz)   ⇒sin z = ((e^(iz)  − e^(−iz) )/(2i))  Now let′s define sin^(−1) (z) using the  complex definition for sin z.  Let s = sin z  ⇒2is=e^(iz) −e^(−iz)   2ise^(iz) =(e^(iz) )^2 −1  let t=e^(iz)   t^2 −2ist−1=0  ⇒t_(1;2) =((2is±(√(−4s^2 +4)))/2)=is±(√(1−s^2 ))  ⇒ln(e^(iz) )=ln(is±(√(1−s^2 )))=iz  ⇒z=sin^(−1) (s)=−i ln(is±(√(1−s^2 )))  And you can see if you substitute  back s=sin z, after you simplify  you′ll get sin^(−1) (sin z)=z.  So now   sinA=(2/(sinB)) ⇒A=sin^(−1) ((2/(sin B)))  we insert that into the formula and we get  A=−i ln(((2i)/(sin B))±(√(1−(4/(sin^2 B)))))  And we add 2kπ (k∈Z) because  sin(A)=sin(A+2π)  A=−i ln(((2i)/(sin B))±(√(1−(4/(sin^2 B))))) +2kπ  Example:  sin A=(2/(sin 45°))=2(√2)  A=−i ln(((2i)/((((√2)/2))))±(√(1−(4/(((2/4))))))) + 2kπ=  =−i ln(2(√2)i±(√(−7)))+2kπ=  =−i ln(2(√2)i±i(√7))+2kπ=  =−i ln[i((√8)±(√7))]+2kπ=  =−i[ln(i)+ln((√8)±(√7))]+2kπ  We now that   z=a+bi=r(cosθ + isinθ)=re^(iθ)   ⇒z=e^(ln(r) + iθ)   ⇒ln(z)=ln(r) + iθ  where r=(√(a^2 +b^2 )) and θ=tan^(−1) ((b/a)).  In our case  ln(i)=ln(1)+i(π/2)=((πi)/2)  ⇒A=−i×((πi)/2) − iln((√8)±(√7))+2kπ  =(π/2)−iln((√8)±(√7)) + 2kπ  ⇒A=(π/2)−i ln((√8)±(√7))+2kπ, k∈Z
TinkutaradidaniceproofforthecasewhereA,BRButwhataboutthecasewhereA,BC(complexnumbers)WeknowthatforzC,sinz(,)Soclearlytherearesolutions.Infactthereareinfinatenumberofsolutions.WeknowthatforzC(1)eiz=cosz+isinz(Eulersformula)ei(z)=coszisinzor(2)eiz=cosz+isinzThenweadd(1)and(2)2isinz=eizeizsinz=eizeiz2iNowletsdefinesin1(z)usingthecomplexdefinitionforsinz.Lets=sinz2is=eizeiz2iseiz=(eiz)21lett=eizt22ist1=0t1;2=2is±4s2+42=is±1s2ln(eiz)=ln(is±1s2)=izz=sin1(s)=iln(is±1s2)Andyoucanseeifyousubstitutebacks=sinz,afteryousimplifyyoullgetsin1(sinz)=z.SonowsinA=2sinBA=sin1(2sinB)weinsertthatintotheformulaandwegetA=iln(2isinB±14sin2B)Andweadd2kπ(kZ)becausesin(A)=sin(A+2π)A=iln(2isinB±14sin2B)+2kπExample:sinA=2sin45°=22A=iln(2i(22)±14(24))+2kπ==iln(22i±7)+2kπ==iln(22i±i7)+2kπ==iln[i(8±7)]+2kπ==i[ln(i)+ln(8±7)]+2kπWenowthatz=a+bi=r(cosθ+isinθ)=reiθz=eln(r)+iθln(z)=ln(r)+iθwherer=a2+b2andθ=tan1(ba).Inourcaseln(i)=ln(1)+iπ2=πi2A=i×πi2iln(8±7)+2kπ=π2iln(8±7)+2kπA=π2iln(8±7)+2kπ,kZ

Leave a Reply

Your email address will not be published. Required fields are marked *