Menu Close

justify-that-0-dt-1-t-4-is-convergent-




Question Number 171071 by mathocean1 last updated on 07/Jun/22
justify that ∫_0 ^(+∞) (dt/(1+t^4 )) is convergent.
justifythat0+dt1+t4isconvergent.
Answered by aleks041103 last updated on 07/Jun/22
∫_0 ^∞ (dt/(1+t^4 ))=∫_0 ^1 (dt/(1+t^4 )) + ∫_1 ^∞ (dt/(1+t^4 ))  1+t^4 ≥1 for 0≤t≤1  ⇒(1/(1+t^4 ))≤1⇒∫_0 ^1 (dt/(1+t^4 ))<∫_0 ^1 1dt=1  ⇒∫_0 ^∞ (dt/(1+t^4 ))<1+∫_1 ^∞ (dt/(1+t^4 ))  for t^4 ≥t^2  for t≥1  ⇒(1/(1+t^4 ))≤(1/(1+t^2 ))  ⇒∫_1 ^∞ (dt/(1+t^4 ))≤∫_1 ^∞ (dt/(1+t^2 ))=arctg(t)_1 ^∞ =(π/4)  ⇒∫_0 ^∞ (dt/(1+t^4 ))<1+(π/4)  obv.  (1/(1+t^4 ))>0⇒∫_0 ^∞ (dt/(1+t^4 ))>0  ⇒0<∫_0 ^∞ (dt/(1+t^4 ))<1+π/4  ⇒∫_0 ^∞ (dt/(1+t^4 )) converges
0dt1+t4=01dt1+t4+1dt1+t41+t41for0t111+t4101dt1+t4<011dt=10dt1+t4<1+1dt1+t4fort4t2fort111+t411+t21dt1+t41dt1+t2=arctg(t)1=π40dt1+t4<1+π4obv.11+t4>00dt1+t4>00<0dt1+t4<1+π/40dt1+t4converges

Leave a Reply

Your email address will not be published. Required fields are marked *