Menu Close

k-0-k-k-4-4-




Question Number 144825 by mathdanisur last updated on 29/Jun/21
Σ_(k=0) ^∞  (k/(k^4  + 4)) = ?
$$\underset{\boldsymbol{{k}}=\mathrm{0}} {\overset{\infty} {\sum}}\:\frac{{k}}{{k}^{\mathrm{4}} \:+\:\mathrm{4}}\:=\:? \\ $$
Answered by Dwaipayan Shikari last updated on 29/Jun/21
Σ_(k=1) ^∞ (k/(k^4 +4))=(1/4)Σ_(k=1) ^∞ (1/((k^2 −2k+2)))−(1/((k^2 +2k+2)))  =(1/4)(1−(1/5)+(1/5)−...)=(1/4)
$$\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{{k}}{{k}^{\mathrm{4}} +\mathrm{4}}=\frac{\mathrm{1}}{\mathrm{4}}\underset{{k}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{\left({k}^{\mathrm{2}} −\mathrm{2}{k}+\mathrm{2}\right)}−\frac{\mathrm{1}}{\left({k}^{\mathrm{2}} +\mathrm{2}{k}+\mathrm{2}\right)} \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}−\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{5}}−…\right)=\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by mathdanisur last updated on 29/Jun/21
thank you Sir, but Σ_(k=0) ^∞
$${thank}\:{you}\:{Sir},\:{but}\:\underset{\boldsymbol{{k}}=\mathrm{0}} {\overset{\infty} {\sum}} \\ $$
Commented by Dwaipayan Shikari last updated on 29/Jun/21
For k=0  it is (0/(0^4 +4))=0  so i excluded that
$${For}\:{k}=\mathrm{0}\:\:{it}\:{is}\:\frac{\mathrm{0}}{\mathrm{0}^{\mathrm{4}} +\mathrm{4}}=\mathrm{0}\:\:{so}\:{i}\:{excluded}\:{that} \\ $$
Commented by mathdanisur last updated on 29/Jun/21
Thankyou Sir
$${Thankyou}\:{Sir} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *