Menu Close

k-1-n-1-1-k-k-V-n-find-V-n-




Question Number 155478 by alcohol last updated on 01/Oct/21
Π_(k = 1 ) ^n (1 + (1/k))^k  = V_n   find V_n
$$\underset{{k}\:=\:\mathrm{1}\:} {\overset{{n}} {\prod}}\left(\mathrm{1}\:+\:\frac{\mathrm{1}}{{k}}\right)^{{k}} \:=\:{V}_{{n}} \\ $$$${find}\:{V}_{{n}} \\ $$
Answered by mindispower last updated on 01/Oct/21
  =Π_(k=1) ^n (((k+1)^k )/k^k )=Π(((k+1)^(k+1) )/(k^k .(1+k)))  =(((1+n)^(n+1) )/(.(n+1)!))=(((1+n)^n )/(n!))
$$ \\ $$$$=\underset{{k}=\mathrm{1}} {\overset{{n}} {\prod}}\frac{\left({k}+\mathrm{1}\right)^{{k}} }{{k}^{{k}} }=\Pi\frac{\left({k}+\mathrm{1}\right)^{{k}+\mathrm{1}} }{{k}^{{k}} .\left(\mathrm{1}+{k}\right)} \\ $$$$=\frac{\left(\mathrm{1}+{n}\right)^{{n}+\mathrm{1}} }{.\left({n}+\mathrm{1}\right)!}=\frac{\left(\mathrm{1}+{n}\right)^{{n}} }{{n}!} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *