Menu Close

k-1-n-1-k-n-




Question Number 185293 by SANOGO last updated on 19/Jan/23
Σ_(k=1) ^n (1/( (√(k+n))))
$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\frac{\mathrm{1}}{\:\sqrt{{k}+{n}}} \\ $$
Commented by aleks041103 last updated on 20/Jan/23
that is wrong.  (√(k+n))≥(√(1+n))⇒(1/( (√(k+n))))≤(1/( (√(1+n))))  you thought (1/( (√(k+n))))≥(1/( (√(1+n))))
$${that}\:{is}\:{wrong}. \\ $$$$\sqrt{{k}+{n}}\geqslant\sqrt{\mathrm{1}+{n}}\Rightarrow\frac{\mathrm{1}}{\:\sqrt{{k}+{n}}}\leqslant\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{n}}} \\ $$$${you}\:{thought}\:\frac{\mathrm{1}}{\:\sqrt{{k}+{n}}}\geqslant\frac{\mathrm{1}}{\:\sqrt{\mathrm{1}+{n}}}\: \\ $$
Commented by Frix last updated on 20/Jan/23
lim_(n→∞)  ((Σ_(k=1) ^n  (1/( (√(k+n)))))/( (√n))) =2((√2)−1) ⇒ lim_(n→∞)  Σ_(k=1) ^n  (1/( (√(k+n)))) =∞
$$\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{\:\sqrt{{k}+{n}}}}{\:\sqrt{{n}}}\:=\mathrm{2}\left(\sqrt{\mathrm{2}}−\mathrm{1}\right)\:\Rightarrow\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{\:\sqrt{{k}+{n}}}\:=\infty \\ $$
Answered by 123564 last updated on 21/Jan/23

Leave a Reply

Your email address will not be published. Required fields are marked *