Menu Close

k-1-n-sin-1-k-k-1-k-k-1-




Question Number 152265 by mathdanisur last updated on 26/Aug/21
Σ_(k=1) ^n sin^(−1) ((((√k) - (√(k - 1)))/( (√(k(k + 1))))) = ?
$$\underset{\boldsymbol{\mathrm{k}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\mathrm{sin}^{−\mathrm{1}} \left(\frac{\sqrt{\mathrm{k}}\:-\:\sqrt{\mathrm{k}\:-\:\mathrm{1}}}{\:\sqrt{\mathrm{k}\left(\mathrm{k}\:+\:\mathrm{1}\right.}}\right)\:=\:? \\ $$
Answered by mindispower last updated on 27/Aug/21
sin^− (a)−sin^− (b)=sin^− (a(√(1−b^2 ))−b(√(1−a^2 )))  (((√k)−(√(k−1)))/( (√(k(k+1)))))=(1/( (√(k+1))))−((√(k−1))/( (√k).(√(k+1))))−  =(1/( (√k)))(√(1−((1/( (√(k+1)))))^2 ))−(1/( (√(k+1))))(√(1−((1/( (√k))))^2 ))  =(1/( (√(k+1))))−((√(k−1))/( (√k).(√(k+1))))  ⇒sin^− ((((√k)−(√(k−1)))/( (√(k(k+1)))))=sin^− ((1/( (√k))))−sin^− ((1/( (√(k+1)))))  ⇔Σ_(k=1) ^n sin^− ((((√k)−(√(k−1)))/( (√(k(k+1))))))=sin^− ((1/( (√n))))−(π/4)
$${sin}^{−} \left({a}\right)−{sin}^{−} \left({b}\right)={sin}^{−} \left({a}\sqrt{\mathrm{1}−{b}^{\mathrm{2}} }−{b}\sqrt{\mathrm{1}−{a}^{\mathrm{2}} }\right) \\ $$$$\frac{\sqrt{{k}}−\sqrt{{k}−\mathrm{1}}}{\:\sqrt{{k}\left({k}+\mathrm{1}\right)}}=\frac{\mathrm{1}}{\:\sqrt{{k}+\mathrm{1}}}−\frac{\sqrt{{k}−\mathrm{1}}}{\:\sqrt{{k}}.\sqrt{{k}+\mathrm{1}}}− \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{{k}}}\sqrt{\mathrm{1}−\left(\frac{\mathrm{1}}{\:\sqrt{{k}+\mathrm{1}}}\right)^{\mathrm{2}} }−\frac{\mathrm{1}}{\:\sqrt{{k}+\mathrm{1}}}\sqrt{\mathrm{1}−\left(\frac{\mathrm{1}}{\:\sqrt{{k}}}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\:\sqrt{{k}+\mathrm{1}}}−\frac{\sqrt{{k}−\mathrm{1}}}{\:\sqrt{{k}}.\sqrt{{k}+\mathrm{1}}} \\ $$$$\Rightarrow{sin}^{−} \left(\frac{\sqrt{{k}}−\sqrt{{k}−\mathrm{1}}}{\:\sqrt{{k}\left({k}+\mathrm{1}\right.}}\right)={sin}^{−} \left(\frac{\mathrm{1}}{\:\sqrt{{k}}}\right)−{sin}^{−} \left(\frac{\mathrm{1}}{\:\sqrt{{k}+\mathrm{1}}}\right) \\ $$$$\Leftrightarrow\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{sin}^{−} \left(\frac{\sqrt{{k}}−\sqrt{{k}−\mathrm{1}}}{\:\sqrt{{k}\left({k}+\mathrm{1}\right)}}\right)={sin}^{−} \left(\frac{\mathrm{1}}{\:\sqrt{{n}}}\right)−\frac{\pi}{\mathrm{4}} \\ $$$$ \\ $$
Commented by mathdanisur last updated on 27/Aug/21
Thank you Ser
$$\mathrm{Thank}\:\mathrm{you}\:\mathrm{Ser} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *