Menu Close

k-2-k-2-2-k-2k-4-2-k-3-2-k-




Question Number 25973 by soyebshaikh41@gmail.com last updated on 17/Dec/17
((k.2^k +2.2^k +2k+4)/2)=(k+3)2^k
$$\frac{\mathrm{k}.\mathrm{2}^{\mathrm{k}} +\mathrm{2}.\mathrm{2}^{\mathrm{k}} +\mathrm{2k}+\mathrm{4}}{\mathrm{2}}=\left(\mathrm{k}+\mathrm{3}\right)\mathrm{2}^{\mathrm{k}} \\ $$
Answered by prakash jain last updated on 17/Dec/17
k2^k +2∙2^k +2k+4=2(k+3)2^k   2^k (k+2−2k−6)=−(2k+4)  2^k (k+4)=2(k+2)  2^(k−1) =((k+2)/(k+4))  k≥0 ⇒k+2<k+4  k−1<0⇒k=0
$${k}\mathrm{2}^{{k}} +\mathrm{2}\centerdot\mathrm{2}^{{k}} +\mathrm{2}{k}+\mathrm{4}=\mathrm{2}\left({k}+\mathrm{3}\right)\mathrm{2}^{{k}} \\ $$$$\mathrm{2}^{{k}} \left({k}+\mathrm{2}−\mathrm{2}{k}−\mathrm{6}\right)=−\left(\mathrm{2}{k}+\mathrm{4}\right) \\ $$$$\mathrm{2}^{{k}} \left({k}+\mathrm{4}\right)=\mathrm{2}\left({k}+\mathrm{2}\right) \\ $$$$\mathrm{2}^{{k}−\mathrm{1}} =\frac{{k}+\mathrm{2}}{{k}+\mathrm{4}} \\ $$$${k}\geqslant\mathrm{0}\:\Rightarrow{k}+\mathrm{2}<{k}+\mathrm{4} \\ $$$${k}−\mathrm{1}<\mathrm{0}\Rightarrow{k}=\mathrm{0} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *