Menu Close

k-6-n-6-k-4-an-2-bn-c-2-a-b-c-




Question Number 165157 by mathlove last updated on 26/Jan/22
Σ_(k=6) ^(n+6) (k−4)=((an^2 +bn+c)/2)  a+b+c=?
$$\underset{{k}=\mathrm{6}} {\overset{{n}+\mathrm{6}} {\sum}}\left({k}−\mathrm{4}\right)=\frac{{an}^{\mathrm{2}} +{bn}+{c}}{\mathrm{2}} \\ $$$${a}+{b}+{c}=? \\ $$
Commented by bobhans last updated on 30/Jan/22
 Σ_(k=6) ^(n+6) (k−4)=Σ_(k=1) ^(n+1) (k+1)=Σ_(k=1) ^(n+1) k+Σ_(k=1) ^(n+1)  1    = (((n+1)(n+2))/2)+(n+1)    =((n^2 +3n+2+2n+2)/2) = ((n^2 +5n+4)/2)   ⇒a+b+c = 1+5+4=10
$$\:\underset{\mathrm{k}=\mathrm{6}} {\overset{\mathrm{n}+\mathrm{6}} {\sum}}\left(\mathrm{k}−\mathrm{4}\right)=\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}+\mathrm{1}} {\sum}}\left(\mathrm{k}+\mathrm{1}\right)=\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}+\mathrm{1}} {\sum}}\mathrm{k}+\underset{\mathrm{k}=\mathrm{1}} {\overset{\mathrm{n}+\mathrm{1}} {\sum}}\:\mathrm{1} \\ $$$$\:\:=\:\frac{\left(\mathrm{n}+\mathrm{1}\right)\left(\mathrm{n}+\mathrm{2}\right)}{\mathrm{2}}+\left(\mathrm{n}+\mathrm{1}\right) \\ $$$$\:\:=\frac{\mathrm{n}^{\mathrm{2}} +\mathrm{3n}+\mathrm{2}+\mathrm{2n}+\mathrm{2}}{\mathrm{2}}\:=\:\frac{\mathrm{n}^{\mathrm{2}} +\mathrm{5n}+\mathrm{4}}{\mathrm{2}} \\ $$$$\:\Rightarrow\mathrm{a}+\mathrm{b}+\mathrm{c}\:=\:\mathrm{1}+\mathrm{5}+\mathrm{4}=\mathrm{10} \\ $$
Answered by mahdipoor last updated on 26/Jan/22
=(6+7+...+(n+6))−(4+...+4)=  ((((n+6)(n+7))/2)−((6×5)/2))−4(n+1)=  ((n^2 +5n−38)/2)≡((an^2 +bn+c)/2)  ⇒a+b+c=1+5−38=−32
$$=\left(\mathrm{6}+\mathrm{7}+…+\left({n}+\mathrm{6}\right)\right)−\left(\mathrm{4}+…+\mathrm{4}\right)= \\ $$$$\left(\frac{\left({n}+\mathrm{6}\right)\left({n}+\mathrm{7}\right)}{\mathrm{2}}−\frac{\mathrm{6}×\mathrm{5}}{\mathrm{2}}\right)−\mathrm{4}\left({n}+\mathrm{1}\right)= \\ $$$$\frac{{n}^{\mathrm{2}} +\mathrm{5}{n}−\mathrm{38}}{\mathrm{2}}\equiv\frac{{an}^{\mathrm{2}} +{bn}+{c}}{\mathrm{2}} \\ $$$$\Rightarrow{a}+{b}+{c}=\mathrm{1}+\mathrm{5}−\mathrm{38}=−\mathrm{32} \\ $$
Answered by mr W last updated on 30/Jan/22
2+3+4+...+(n+2)  =(((n+1)(n+4))/2)  =((n^2 +5n+4)/2)  a+b+c=1+5+4=10
$$\mathrm{2}+\mathrm{3}+\mathrm{4}+…+\left({n}+\mathrm{2}\right) \\ $$$$=\frac{\left({n}+\mathrm{1}\right)\left({n}+\mathrm{4}\right)}{\mathrm{2}} \\ $$$$=\frac{{n}^{\mathrm{2}} +\mathrm{5}{n}+\mathrm{4}}{\mathrm{2}} \\ $$$${a}+{b}+{c}=\mathrm{1}+\mathrm{5}+\mathrm{4}=\mathrm{10} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *