Menu Close

k-lim-n-1-n-p-0-n-n-p-n-k-n-p-k-N-fixed-find-lim-n-1-n-1-i-1-n-i-1-i-2-




Question Number 151078 by mathdanisur last updated on 18/Aug/21
Ω_k =lim_(n→∞) (1/n) ∙Σ_(p=0) ^n  ( ((n),(p) )/ (((n+k)),((n+p)) ))  ;  k∈N^∗ -fixed  find  Ω=lim_(n→∞) (1/Ω_(n-1) ) ∙Σ_(i=1) ^n  ((i!))^(1/i^2 )
$$\Omega_{\boldsymbol{\mathrm{k}}} =\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\mathrm{n}}\:\centerdot\underset{\boldsymbol{\mathrm{p}}=\mathrm{0}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\frac{\begin{pmatrix}{\mathrm{n}}\\{\mathrm{p}}\end{pmatrix}}{\begin{pmatrix}{\mathrm{n}+\mathrm{k}}\\{\mathrm{n}+\mathrm{p}}\end{pmatrix}}\:\:;\:\:\mathrm{k}\in\mathbb{N}^{\ast} -\mathrm{fixed} \\ $$$$\mathrm{find}\:\:\Omega=\underset{\boldsymbol{\mathrm{n}}\rightarrow\infty} {\mathrm{lim}}\frac{\mathrm{1}}{\Omega_{\boldsymbol{\mathrm{n}}-\mathrm{1}} }\:\centerdot\underset{\boldsymbol{\mathrm{i}}=\mathrm{1}} {\overset{\boldsymbol{\mathrm{n}}} {\sum}}\:\sqrt[{\boldsymbol{\mathrm{i}}^{\mathrm{2}} }]{\boldsymbol{\mathrm{i}}!}\: \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *