Menu Close

K-x-3-cos-x-5-4sin-x-max-K-x-min-K-x-




Question Number 163700 by blackmamba last updated on 09/Jan/22
  K(x) = ((3 cos x)/(5+4sin x))    {: ((max K(x))),((min K(x))) } =?
K(x)=3cosx5+4sinxmaxK(x)minK(x)}=?
Answered by mr W last updated on 10/Jan/22
((3 cos x)/(5+4 sin x))=k  3 cos x−4k sin x=5k  (3/( (√(3^2 +(4k)^2 )))) cos x−((4k)/( (√(3^2 +(4k)^2 )))) sin x=((5k)/( (√(3^2 +(4k)^2 ))))  cos α cos x−sin α sin x=((5k)/( (√(3^2 +(4k)^2 ))))  cos (x+α)=((5k)/( (√(3^2 +(4k)^2 ))))  ((5k)/( (√(3^2 +(4k)^2 ))))≤1  25k^2 ≤9+16k^2   k^2 ≤1  −1≤k≤1  k(x)_(min) =−1  k(x)_(max) =1
3cosx5+4sinx=k3cosx4ksinx=5k332+(4k)2cosx4k32+(4k)2sinx=5k32+(4k)2cosαcosxsinαsinx=5k32+(4k)2cos(x+α)=5k32+(4k)25k32+(4k)2125k29+16k2k211k1k(x)min=1k(x)max=1
Answered by MJS_new last updated on 09/Jan/22
((3c)/(5+4s))=±((3(√(1−s^2 )))/(5+4s))  ±(d/ds)[((3(√(1−s^2 )))/(5+4s))]=0  ∓((3(5s+4))/((4s+5)^2 (√(1−s^2 ))))=0 ⇒ s=−(4/5) ⇒ −1≤K≤1
3c5+4s=±31s25+4s±dds[31s25+4s]=03(5s+4)(4s+5)21s2=0s=451K1
Commented by blackmamba last updated on 09/Jan/22
yes
yes
Answered by cortano1 last updated on 09/Jan/22
  (Q) Given K(x) = ((3cos x)/(5+4sin x))         Find max & min of K(x)   Let y=K(x)=((3cos x)/(5+4sin x))   5y+4y sin x=3cos x    5y = 3cos x−4y sin x ...(i)     By Cauchy − Schwarz    ∣ 3cos x−4y sin x ∣ ≤ (√((3)^2 +(−4y)^2 ))   ∣5y∣ ≤ (√(9+16y^2 ))   ⇔ 25y^2  ≤ 9+16y^2    ⇔ 9(y^2 −1)≤ 0   ⇔ −1≤y≤1    ∴  −1≤K(x)≤1 ⇒ {: ((max K(x)=1)),((min K(x)=−1)) }
(Q)GivenK(x)=3cosx5+4sinxFindmax&minofK(x)Lety=K(x)=3cosx5+4sinx5y+4ysinx=3cosx5y=3cosx4ysinx(i)ByCauchySchwarz3cosx4ysinx(3)2+(4y)25y9+16y225y29+16y29(y21)01y11K(x)1maxK(x)=1minK(x)=1}
Commented by blackmamba last updated on 09/Jan/22
yes
yes

Leave a Reply

Your email address will not be published. Required fields are marked *