Question Number 58358 by Mahmoud A.R last updated on 22/Apr/19
$${knowing}\:{that}:\: \\ $$$${cos}\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}} }{\left(\mathrm{2}{n}\right)!}\:\:\:\: \\ $$$${sin}\left({x}\right)=\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\left(−\mathrm{1}\right)^{{n}} {x}^{\mathrm{2}{n}+\mathrm{1}} }{\left(\mathrm{2}{n}\:+\mathrm{1}\right)!} \\ $$$${prof}\:{that}:\:{cos}\left({x}+{y}\right)=\:{cos}\left({x}\right){cos}\left({y}\right)−{sin}\left({x}\right){sin}\left({y}\right) \\ $$