Menu Close

known-a-lt-pi-2-If-M-lt-1-with-cos-x-cos-y-M-x-y-for-every-x-y-0-a-then-M-




Question Number 55908 by gunawan last updated on 06/Mar/19
known a < (π/2) .  If  M<1 with ∣cos x−cos y∣≤M ∣x−y∣  for every x, y ∈ [0,a], then M=..
$$\mathrm{known}\:{a}\:<\:\frac{\pi}{\mathrm{2}}\:. \\ $$$$\mathrm{If}\:\:\mathrm{M}<\mathrm{1}\:\mathrm{with}\:\mid\mathrm{cos}\:{x}−\mathrm{cos}\:{y}\mid\leqslant\mathrm{M}\:\mid{x}−{y}\mid \\ $$$$\mathrm{for}\:\mathrm{every}\:{x},\:{y}\:\in\:\left[\mathrm{0},{a}\right],\:\mathrm{then}\:\mathrm{M}=.. \\ $$
Answered by tanmay.chaudhury50@gmail.com last updated on 07/Mar/19
let y>x  so cosx>cosy  =cosx−cosy  =+ve  but x−y=−ve  ∣x−y∣=+ve  from attached graph  tanθ=((y_2 −y_1 )/(x_2 −x_1 ))=((cosy−cosx)/(y−x))  tanθ=M=((cosy−cosx)/(y−x)) but cosx>cosy  y>x  so tanθ=M  is −ve  wait...
$${let}\:{y}>{x} \\ $$$${so}\:{cosx}>{cosy} \\ $$$$={cosx}−{cosy} \\ $$$$=+{ve} \\ $$$${but}\:{x}−{y}=−{ve} \\ $$$$\mid{x}−{y}\mid=+{ve} \\ $$$${from}\:{attached}\:{graph} \\ $$$${tan}\theta=\frac{{y}_{\mathrm{2}} −{y}_{\mathrm{1}} }{{x}_{\mathrm{2}} −{x}_{\mathrm{1}} }=\frac{{cosy}−{cosx}}{{y}−{x}} \\ $$$${tan}\theta={M}=\frac{{cosy}−{cosx}}{{y}−{x}}\:{but}\:{cosx}>{cosy} \\ $$$${y}>{x}\:\:{so}\:{tan}\theta={M}\:\:{is}\:−{ve} \\ $$$${wait}… \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 07/Mar/19
Commented by gunawan last updated on 07/Mar/19
What is the +ve Sir?
$$\mathrm{What}\:\mathrm{is}\:\mathrm{the}\:+{ve}\:\mathrm{Sir}? \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *