Menu Close

Known-a-R-and-function-f-R-R-satiesfied-xf-x-a-lt-sin-2-x-a-For-all-x-R-value-of-lim-x-a-f-x-




Question Number 55639 by gunawan last updated on 01/Mar/19
Known a ∈ R and  function f : R→R satiesfied  ∣xf(x)+a∣ < sin^2  (x−a).   For all x ∈ R  value of lim_(x→a)  f(x) ..
$$\mathrm{Known}\:{a}\:\in\:\mathbb{R}\:\mathrm{and} \\ $$$$\mathrm{function}\:{f}\::\:\mathbb{R}\rightarrow\mathbb{R}\:\mathrm{satiesfied} \\ $$$$\mid{xf}\left({x}\right)+{a}\mid\:<\:\mathrm{sin}^{\mathrm{2}} \:\left({x}−{a}\right).\: \\ $$$$\mathrm{For}\:\mathrm{all}\:{x}\:\in\:\mathbb{R} \\ $$$$\mathrm{value}\:\mathrm{of}\:\underset{{x}\rightarrow{a}} {\mathrm{lim}}\:{f}\left({x}\right)\:.. \\ $$
Answered by kaivan.ahmadi last updated on 01/Mar/19
−sin^2 (x−a)<xf(x)+a<sin^2 (x−a)  by sandwich theorem  lim_(x→a) xf(x)+a=0⇒lim_(x→a)  xf(x)=−a⇒  lim_(x→a) x×lim_(x→a) f(x)=−a⇒  lim_(x→a) f(x)=−1
$$−{sin}^{\mathrm{2}} \left({x}−{a}\right)<{xf}\left({x}\right)+{a}<{sin}^{\mathrm{2}} \left({x}−{a}\right) \\ $$$${by}\:{sandwich}\:{theorem} \\ $$$${li}\underset{{x}\rightarrow{a}} {{m}xf}\left({x}\right)+{a}=\mathrm{0}\Rightarrow{li}\underset{{x}\rightarrow{a}} {{m}}\:{xf}\left({x}\right)=−{a}\Rightarrow \\ $$$${li}\underset{{x}\rightarrow{a}} {{m}x}×{li}\underset{{x}\rightarrow{a}} {{m}f}\left({x}\right)=−{a}\Rightarrow \\ $$$${li}\underset{{x}\rightarrow{a}} {{m}f}\left({x}\right)=−\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *