Menu Close

Known-analytic-function-f-z-2-z-2-z-z-4-and-written-as-f-z-n-0-a-n-z-1-n-The-value-of-a-100-is-




Question Number 55069 by gunawan last updated on 17/Feb/19
Known analytic function  f(z)=((2(z−2))/(z(z−4)))  and written as f(z)=Σ_(n=0) ^(∝)  a_n (z−1)^n   The value of a_(100)  is...
Knownanalyticfunctionf(z)=2(z2)z(z4)andwrittenasf(z)=Σn=0an(z1)nThevalueofa100is
Commented by maxmathsup by imad last updated on 17/Feb/19
we have f(z+1) =Σ_(n=0) ^∞ a_n z^n  =g(z)  ⇒taylor serie give a_n =((g^((n)) (0))/(n!))  but g(z)=f(z+1) =((2(z−1))/((z+1)(z−3))) =(a/(z+1)) +(b/(z−3))  a =lim_(z→−1) (z+1)g(z) =((−4)/(−4)) =1  b =lim_(z→3) (z−3)g(z) =(4/4) =1 ⇒g(z)=(1/(z+1)) +(1/(z−3)) ⇒g^((n)) (z)=(((−1)^n n!)/((z+1)^(n+1) )) +(((−1)^n n!)/((z−3)^(n+1) ))  ⇒g^((n)) (0) =(−1)^n n! +(((−1)^n n!)/((−3)^(n+1) )) ⇒a_n =(−1)^n  +(((−1)^n )/((−3)^(n+1) ))  a_n =(−1)^n  −(1/3^(n+1) ) ⇒a_(100)  =1−(1/3^(101) )
wehavef(z+1)=n=0anzn=g(z)taylorseriegivean=g(n)(0)n!butg(z)=f(z+1)=2(z1)(z+1)(z3)=az+1+bz3a=limz1(z+1)g(z)=44=1b=limz3(z3)g(z)=44=1g(z)=1z+1+1z3g(n)(z)=(1)nn!(z+1)n+1+(1)nn!(z3)n+1g(n)(0)=(1)nn!+(1)nn!(3)n+1an=(1)n+(1)n(3)n+1an=(1)n13n+1a100=113101
Commented by mr W last updated on 17/Feb/19
thanks sir!
thankssir!
Commented by maxmathsup by imad last updated on 17/Feb/19
you are welcome sir.
youarewelcomesir.
Answered by mr W last updated on 17/Feb/19
f(z)=((2(z−2))/(z(z−4)))=((2[(z−1)−1])/([(z−1)+1][(z−1)−3]))  let t=z−1  f(z)=−((2(t−1))/(3(1+t)(1−(t/3))))  (1/(1+t))=Σ_(k=0) ^∞ (−t)^k =Σ_(k=0) ^∞ (−1)^k t^k   (1/(1−(t/3)))=Σ_(k=9) ^∞ ((t/3))^k =Σ_(k=0) ^∞ (t^k /3^k )  f(z)=−(2/3)(t−1)[Σ_(k=0) ^∞ (−1)^k t^k ][Σ_(k=0) ^∞ (t^k /3^k )]=Σ_(n=0) ^∞ a_n t^n =Σ_(n=0) ^∞ a_n (z−1)^n   a_(100) =−(2/3){Σ_(k=0) ^(99) (((−1)^(99−k) )/3^k )−Σ_(k=0) ^(100) (((−1)^(100−k) )/3^k )}  a_(100) =−(2/3){2Σ_(k=0) ^(99) (((−1)^(99−k) )/3^k )−(1/3^(100) )}  a_(100) =−(2/3){2(−(1/3^0 )+(1/3^1 )−(1/3^2 )+...+(1/3^(99) ))−(1/3^(100) )}  a_(100) =−(2/3){2(−((1−(−(1/3))^(100) )/(1−(−(1/3)))))−(1/3^(100) )}  a_(100) =−(2/3){−(3/2)[1−(1/3^(100) )]−(1/3^(100) )}  a_(100) =−(2/3){−(3/2)+(1/(2×3^(100) ))}  ⇒a_(100) =1−(1/3^(101) )    in general a_n =(−1)^n −(1/3^(n+1) )
f(z)=2(z2)z(z4)=2[(z1)1][(z1)+1][(z1)3]lett=z1f(z)=2(t1)3(1+t)(1t3)11+t=k=0(t)k=k=0(1)ktk11t3=k=9(t3)k=k=0tk3kf(z)=23(t1)[k=0(1)ktk][k=0tk3k]=n=0antn=n=0an(z1)na100=23{99k=0(1)99k3k100k=0(1)100k3k}a100=23{299k=0(1)99k3k13100}a100=23{2(130+131132++1399)13100}a100=23{2(1(13)1001(13))13100}a100=23{32[113100]13100}a100=23{32+12×3100}a100=113101ingeneralan=(1)n13n+1
Commented by mr W last updated on 17/Feb/19
the other method is using tailor series:  f(x)=Σ_(n=0) ^∞ ((f^((n)) (a))/(n!))(x−a)^n
theothermethodisusingtailorseries:f(x)=n=0f(n)(a)n!(xa)n
Commented by mr W last updated on 17/Feb/19
this is the method i know, only using  geometric progression.  please feedback if my answer is correct.
thisisthemethodiknow,onlyusinggeometricprogression.pleasefeedbackifmyansweriscorrect.
Commented by gunawan last updated on 17/Feb/19
Answer is correct Sir  thank you very much  i don′t know orther solution
AnsweriscorrectSirthankyouverymuchidontknoworthersolution

Leave a Reply

Your email address will not be published. Required fields are marked *