Question Number 55643 by gunawan last updated on 01/Mar/19
$$\mathrm{known}\:\mathrm{function}\:{f} \\ $$$$\mathrm{diferensiable}\:\mathrm{continues}\:\mathrm{at}\:\left[{a},\:{b}\right] \\ $$$$\mathrm{If}\:{f}\left({a}\right)={f}\left({b}\right)=\mathrm{0} \\ $$$$\mathrm{and}\: \\ $$$$\int_{{a}} ^{{b}} \left[{f}\left({x}\right)\right]^{\mathrm{2}} {dx}=\mathrm{1} \\ $$$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\int_{{a}} ^{{b}} {x}^{\mathrm{2}} \left[{f}'\left({x}\right)\right]^{\mathrm{2}} \:{dx}\:\geqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Mar/19
$$\left[{f}\left({x}\right)\right]\leftarrow{is}\:\left[.\right]\:{greatest}\:{integer}\:{function}\:{or}\: \\ $$$${simply}\:{bracket}… \\ $$