Menu Close

known-function-f-diferensiable-continues-at-a-b-If-f-a-f-b-0-and-a-b-f-x-2-dx-1-Prove-that-a-b-x-2-f-x-2-dx-1-4-




Question Number 55643 by gunawan last updated on 01/Mar/19
known function f  diferensiable continues at [a, b]  If f(a)=f(b)=0  and   ∫_a ^b [f(x)]^2 dx=1  Prove that   ∫_a ^b x^2 [f′(x)]^2  dx ≥(1/4)
$$\mathrm{known}\:\mathrm{function}\:{f} \\ $$$$\mathrm{diferensiable}\:\mathrm{continues}\:\mathrm{at}\:\left[{a},\:{b}\right] \\ $$$$\mathrm{If}\:{f}\left({a}\right)={f}\left({b}\right)=\mathrm{0} \\ $$$$\mathrm{and}\: \\ $$$$\int_{{a}} ^{{b}} \left[{f}\left({x}\right)\right]^{\mathrm{2}} {dx}=\mathrm{1} \\ $$$$\mathrm{Prove}\:\mathrm{that}\: \\ $$$$\int_{{a}} ^{{b}} {x}^{\mathrm{2}} \left[{f}'\left({x}\right)\right]^{\mathrm{2}} \:{dx}\:\geqslant\frac{\mathrm{1}}{\mathrm{4}} \\ $$
Commented by tanmay.chaudhury50@gmail.com last updated on 01/Mar/19
[f(x)]←is [.] greatest integer function or   simply bracket...
$$\left[{f}\left({x}\right)\right]\leftarrow{is}\:\left[.\right]\:{greatest}\:{integer}\:{function}\:{or}\: \\ $$$${simply}\:{bracket}… \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *