Menu Close

known-real-numbers-sequence-a-n-and-b-n-both-of-them-convergences-to-0-If-b-n-monotonous-descend-and-lim-n-a-n-1-a-n-b-n-1-b-n-then-lim-n-a-n-2b-n-




Question Number 55640 by gunawan last updated on 01/Mar/19
known real numbers sequence  {a_n } and {b_n } both of them  convergences to 0.  If {b_n } monotonous descend  and lim_(n→∞)  ((a_(n+1) −a_n )/(b_(n+1) −b_n )) .  then lim_(n→∞)  (a_n /(2b_n ))=..
$$\mathrm{known}\:\mathrm{real}\:\mathrm{numbers}\:\mathrm{sequence} \\ $$$$\left\{{a}_{{n}} \right\}\:\mathrm{and}\:\left\{{b}_{{n}} \right\}\:\mathrm{both}\:\mathrm{of}\:\mathrm{them} \\ $$$$\mathrm{convergences}\:\mathrm{to}\:\mathrm{0}. \\ $$$$\mathrm{If}\:\left\{{b}_{{n}} \right\}\:\mathrm{monotonous}\:\mathrm{descend} \\ $$$$\mathrm{and}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{{a}_{{n}+\mathrm{1}} −{a}_{{n}} }{{b}_{{n}+\mathrm{1}} −{b}_{{n}} }\:. \\ $$$$\mathrm{then}\:\underset{{n}\rightarrow\infty} {\mathrm{lim}}\:\frac{{a}_{{n}} }{\mathrm{2}{b}_{{n}} }=.. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *