Menu Close

L-0-1-0-1-0-1-x-y-y-z-z-x-n-dxdydz-




Question Number 155146 by amin96 last updated on 26/Sep/21
L=∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ({(x/y)}{(y/z)}{(z/x)})^n dxdydz=?
$$\mathscr{L}=\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\left\{\frac{{x}}{{y}}\right\}\left\{\frac{{y}}{{z}}\right\}\left\{\frac{{z}}{{x}}\right\}\right)^{{n}} {dxdydz}=? \\ $$
Answered by yeti123 last updated on 26/Sep/21
L = ∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ({(x/y)}{(y/z)}{(z/x)})^n dxdydz       = ∫_0 ^1 ∫_0 ^1 ∫_0 ^1 ((x/x)×(y/y)×(z/z))^n dxdydz       = ∫_0 ^1 ∫_0 ^1 ∫_0 ^1 (1)^n dxdydz       = ∫_0 ^1 ∫_0 ^1 ∫_0 ^1 dxdydz       = 1
$$\mathscr{L}\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\left\{\frac{{x}}{{y}}\right\}\left\{\frac{{y}}{{z}}\right\}\left\{\frac{{z}}{{x}}\right\}\right)^{{n}} {dxdydz} \\ $$$$\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\frac{{x}}{{x}}×\frac{{y}}{{y}}×\frac{{z}}{{z}}\right)^{{n}} {dxdydz} \\ $$$$\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \left(\mathrm{1}\right)^{{n}} {dxdydz} \\ $$$$\:\:\:\:\:=\:\int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} \int_{\mathrm{0}} ^{\mathrm{1}} {dxdydz} \\ $$$$\:\:\:\:\:=\:\mathrm{1} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *