Question Number 144394 by SOMEDAVONG last updated on 25/Jun/21
$$\mathrm{L}=\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\:+\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}\:+…+\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{n}}\right)=? \\ $$
Commented by Canebulok last updated on 25/Jun/21
$$\: \\ $$$$\boldsymbol{{Solution}}: \\ $$$$\Rightarrow\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\:\frac{\mathrm{1}}{{n}+{k}}\right)\:=\:{L} \\ $$$$\Rightarrow\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{n}}\right)\:\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\:\frac{{n}}{{n}+{k}}\right)\:=\:{L} \\ $$$$\Rightarrow\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{n}}\right)\:\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{1}+\frac{{k}}{{n}}\right)}\:\right)\:=\:{L} \\ $$$$\therefore \\ $$$$\Rightarrow\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{1}}{{x}+\mathrm{1}}\:{dx}\:=\:\left[{Ln}\left(\mid{x}+\mathrm{1}\mid\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\Rightarrow\:{L}\:=\:{Ln}\left(\mid\mathrm{2}\mid\right) \\ $$