Menu Close

L-lim-n-1-n-1-1-n-2-1-n-n-




Question Number 144394 by SOMEDAVONG last updated on 25/Jun/21
L=lim_(n→+∝) ((1/(n+1)) + (1/(n+2)) +...+ (1/(n+n)))=?
$$\mathrm{L}=\underset{\mathrm{n}\rightarrow+\propto} {\mathrm{lim}}\left(\frac{\mathrm{1}}{\mathrm{n}+\mathrm{1}}\:+\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{2}}\:+…+\:\frac{\mathrm{1}}{\mathrm{n}+\mathrm{n}}\right)=? \\ $$
Commented by Canebulok last updated on 25/Jun/21
   Solution:  ⇒ lim_(n→+∞)  (Σ_(k=1) ^n   (1/(n+k))) = L  ⇒ lim_(n→+∞)  ((1/n)) (Σ_(k=1) ^n   (n/(n+k))) = L  ⇒ lim_(n→+∞)  ((1/n)) (Σ_(k=1) ^n  (1/((1+(k/n)))) ) = L  ∴  ⇒ ∫_0 ^( 1)  (1/(x+1)) dx = [Ln(∣x+1∣)]_0 ^1   ⇒ L = Ln(∣2∣)
$$\: \\ $$$$\boldsymbol{{Solution}}: \\ $$$$\Rightarrow\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\:\frac{\mathrm{1}}{{n}+{k}}\right)\:=\:{L} \\ $$$$\Rightarrow\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{n}}\right)\:\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\:\frac{{n}}{{n}+{k}}\right)\:=\:{L} \\ $$$$\Rightarrow\:\underset{{n}\rightarrow+\infty} {\mathrm{lim}}\:\left(\frac{\mathrm{1}}{{n}}\right)\:\left(\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\:\frac{\mathrm{1}}{\left(\mathrm{1}+\frac{{k}}{{n}}\right)}\:\right)\:=\:{L} \\ $$$$\therefore \\ $$$$\Rightarrow\:\int_{\mathrm{0}} ^{\:\mathrm{1}} \:\frac{\mathrm{1}}{{x}+\mathrm{1}}\:{dx}\:=\:\left[{Ln}\left(\mid{x}+\mathrm{1}\mid\right)\right]_{\mathrm{0}} ^{\mathrm{1}} \\ $$$$\Rightarrow\:{L}\:=\:{Ln}\left(\mid\mathrm{2}\mid\right) \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *