Menu Close

L-lim-n-1-n-2-1-2-2-n-2-2-2-n-n-2-n-2-




Question Number 144396 by SOMEDAVONG last updated on 25/Jun/21
L=lim_(n→+∝) ((1/(n^2 +1^2 )) + (2/(n^2 +2^2 )) +..+ (n/(n^2 +n^2 )))=?
L=limn+(1n2+12+2n2+22+..+nn2+n2)=?
Commented by Canebulok last updated on 25/Jun/21
   Solution:  ⇒ lim_(n→+∞)  (Σ_(k=1) ^n  (k/(n^2 +k^2 )) ) = L  ⇒ lim_(n→+∞)  ((1/n)) (Σ_(k=1) ^n  ((nk)/(n^2 +k^2 )) ) = L  ⇒ lim_(n→+∞)  ((1/n)) (Σ_(k=1) ^n  (1/((n/k)+(k/n))) ) = L  ∴  ⇒ ∫_0 ^( 1)  (1/(((1/x) + x))) dx = L  ⇒ ∫_0 ^( 1)  (x/(x^2 +1)) dx = [((Ln(∣x^2 +1∣))/2) ∣_0 ^1  ]  ⇒ L = ((Ln(∣2∣))/2)
Solution:limn+(nk=1kn2+k2)=Llimn+(1n)(nk=1nkn2+k2)=Llimn+(1n)(nk=11nk+kn)=L011(1x+x)dx=L01xx2+1dx=[Ln(x2+1)201]L=Ln(2)2
Answered by mathmax by abdo last updated on 25/Jun/21
L=lim_(n→+∞) Σ_(k=1) ^n  (k/(n^2  +k^2 )) =lim_(n→+∞)     ((k/n)/(n+(k^2 /n)))  =lim_(n→+∞) (1/n)×((k/n)/(1+((k/n))^2 ))=∫_0 ^1   (x/(1+x^2 ))dx =(1/2)[log(1+x^2 )]_0 ^1   =(1/2)log2
L=limn+k=1nkn2+k2=limn+knn+k2n=limn+1n×kn1+(kn)2=01x1+x2dx=12[log(1+x2)]01=12log2

Leave a Reply

Your email address will not be published. Required fields are marked *