L-lim-n-1-n-2-1-2-2-n-2-2-2-n-n-2-n-2- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 144396 by SOMEDAVONG last updated on 25/Jun/21 L=limn→+∝(1n2+12+2n2+22+..+nn2+n2)=? Commented by Canebulok last updated on 25/Jun/21 Solution:⇒limn→+∞(∑nk=1kn2+k2)=L⇒limn→+∞(1n)(∑nk=1nkn2+k2)=L⇒limn→+∞(1n)(∑nk=11nk+kn)=L∴⇒∫011(1x+x)dx=L⇒∫01xx2+1dx=[Ln(∣x2+1∣)2∣01]⇒L=Ln(∣2∣)2 Answered by mathmax by abdo last updated on 25/Jun/21 L=limn→+∞∑k=1nkn2+k2=limn→+∞knn+k2n=limn→+∞1n×kn1+(kn)2=∫01x1+x2dx=12[log(1+x2)]01=12log2 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: L-lim-n-n-n-2-n-3-n-4-n-n-1-n-2-n-3-n-4-n-n-n-Next Next post: Can-we-define-factorial-for-any-real-number- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.