Menu Close

L-lim-x-pi-4-1-cos-2-x-2tanx-cos2x-




Question Number 120914 by SOMEDAVONG last updated on 04/Nov/20
L/.lim_(x→(π/4)) (((1/(cos^2 x)) − 2tanx)/(cos2x))  = ?
L/.limxπ41cos2x2tanxcos2x=?
Answered by bemath last updated on 04/Nov/20
 lim_(x→π/4)  ((sec^2 x−2tan x)/(cos 2x))   set x=(π/4)+X   lim_(X→0)  ((tan^2 ((π/4)+X)−2tan ((π/4)+X)+1)/(cos (2X+(π/2)))) =  lim_(X→0)  (((tan (X+(π/4))−1)^2 )/(sin 2X))=   lim_(X→0)  (((((1+tan X)/(1−tan X))−1)^2 )/(sin 2X)) =   lim_(X→0)  (((2tan X)/(1−tan X)))^2 .(1/(sin 2X))=   lim_(X→0)  (1/((1−tan X)^2 )) .lim_(X→0) ((4tan^2 X)/(sin 2X)) =   1 × 0 = 0 .
limxπ/4sec2x2tanxcos2xsetx=π4+XlimX0tan2(π4+X)2tan(π4+X)+1cos(2X+π2)=limX0(tan(X+π4)1)2sin2X=limX0(1+tanX1tanX1)2sin2X=limX0(2tanX1tanX)2.1sin2X=limX01(1tanX)2.limX04tan2Xsin2X=1×0=0.
Answered by Jamshidbek2311 last updated on 04/Nov/20
lim_(x→(π/4))  ((1+tan^2 x−2tanx)/(cos2x))=(((tanx−1)^2 )/(cos2x))  Lopital ((((tanx−1)^2 )/(cos2x)))^� =((2(tanx−1)×(1/(cos^2 x)))/(−2sin2x))=0
limxπ41+tan2x2tanxcos2x=(tanx1)2cos2xMissing \left or extra \right
Answered by MJS_new last updated on 04/Nov/20
let t=tan (x/2)  (((1/(cos^2  x))−2tan x)/(cos 2x))=((t^2 +1−2t)/(−((t^2 −1)/(t^2 +1))))=(((t−1)(t^2 +1))/(t+1))  lim_(t→1)  −(((t−1)(t^2 +1))/(t+1)) =0
lett=tanx21cos2x2tanxcos2x=t2+12tt21t2+1=(t1)(t2+1)t+1limt1(t1)(t2+1)t+1=0

Leave a Reply

Your email address will not be published. Required fields are marked *