L-lim-x-pi-4-1-cos-2-x-2tanx-cos2x- Tinku Tara June 4, 2023 None 0 Comments FacebookTweetPin Question Number 120914 by SOMEDAVONG last updated on 04/Nov/20 L/.limx→π41cos2x−2tanxcos2x=? Answered by bemath last updated on 04/Nov/20 limx→π/4sec2x−2tanxcos2xsetx=π4+XlimX→0tan2(π4+X)−2tan(π4+X)+1cos(2X+π2)=limX→0(tan(X+π4)−1)2sin2X=limX→0(1+tanX1−tanX−1)2sin2X=limX→0(2tanX1−tanX)2.1sin2X=limX→01(1−tanX)2.limX→04tan2Xsin2X=1×0=0. Answered by Jamshidbek2311 last updated on 04/Nov/20 limx→π41+tan2x−2tanxcos2x=(tanx−1)2cos2xMissing \left or extra \rightMissing \left or extra \right Answered by MJS_new last updated on 04/Nov/20 lett=tanx21cos2x−2tanxcos2x=t2+1−2t−t2−1t2+1=(t−1)(t2+1)t+1limt→1−(t−1)(t2+1)t+1=0 Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: Show-that-the-function-y-x-5-has-no-derivative-at-x-5-Next Next post: 1-e-x-1-dx- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.