Menu Close

L-means-laplacr-trsnsform-find-L-sin-at-and-L-cos-at-




Question Number 28993 by abdo imad last updated on 02/Feb/18
L means laplacr trsnsform find L (sin(at))  and L(cos(at)).
$${L}\:{means}\:{laplacr}\:{trsnsform}\:{find}\:{L}\:\left({sin}\left({at}\right)\right) \\ $$$${and}\:{L}\left({cos}\left({at}\right)\right). \\ $$
Answered by sma3l2996 last updated on 03/Feb/18
L(sin(at))=∫_0 ^∞ sin(at)e^(−st) dt  u=sin(at)⇒u′=acos(at)  v′=e^(−st) ⇒v=−(1/s)e^(−st)   L(sin(at))=(a/s)∫_0 ^∞ cos(at)e^(−st) dt  u=cos(at)⇒u′=−asin(at)  v′=e^(−st) ⇒v=−(1/s)e^(−st)   L(sin(at))=(a/s^2 )−(a^2 /s^2 )∫_0 ^∞ sin(at)e^(−st) dt=(a/s^2 )−(a^2 /s^2 )L(sin(at))  L(sin(at))(1+(a^2 /s^2 ))=(a/s^2 )  L(sin(at))=(a/(s^2 +a^2 ))
$${L}\left({sin}\left({at}\right)\right)=\int_{\mathrm{0}} ^{\infty} {sin}\left({at}\right){e}^{−{st}} {dt} \\ $$$${u}={sin}\left({at}\right)\Rightarrow{u}'={acos}\left({at}\right) \\ $$$${v}'={e}^{−{st}} \Rightarrow{v}=−\frac{\mathrm{1}}{{s}}{e}^{−{st}} \\ $$$${L}\left({sin}\left({at}\right)\right)=\frac{{a}}{{s}}\int_{\mathrm{0}} ^{\infty} {cos}\left({at}\right){e}^{−{st}} {dt} \\ $$$${u}={cos}\left({at}\right)\Rightarrow{u}'=−{asin}\left({at}\right) \\ $$$${v}'={e}^{−{st}} \Rightarrow{v}=−\frac{\mathrm{1}}{{s}}{e}^{−{st}} \\ $$$${L}\left({sin}\left({at}\right)\right)=\frac{{a}}{{s}^{\mathrm{2}} }−\frac{{a}^{\mathrm{2}} }{{s}^{\mathrm{2}} }\int_{\mathrm{0}} ^{\infty} {sin}\left({at}\right){e}^{−{st}} {dt}=\frac{{a}}{{s}^{\mathrm{2}} }−\frac{{a}^{\mathrm{2}} }{{s}^{\mathrm{2}} }{L}\left({sin}\left({at}\right)\right) \\ $$$${L}\left({sin}\left({at}\right)\right)\left(\mathrm{1}+\frac{{a}^{\mathrm{2}} }{{s}^{\mathrm{2}} }\right)=\frac{{a}}{{s}^{\mathrm{2}} } \\ $$$${L}\left({sin}\left({at}\right)\right)=\frac{{a}}{{s}^{\mathrm{2}} +{a}^{\mathrm{2}} } \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *