Menu Close

l-x-0-im-f-x-1-1-x-f-1-f-1-help-me-




Question Number 100343 by student work last updated on 26/Jun/20
l_(x→0) im ((f(x+1)^(1/x) )/(f(1)))            f(1)=?  help me
$$\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{l}im}\:\frac{\mathrm{f}\left(\mathrm{x}+\mathrm{1}\right)^{\frac{\mathrm{1}}{\mathrm{x}}} }{\mathrm{f}\left(\mathrm{1}\right)}\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{f}\left(\mathrm{1}\right)=? \\ $$$$\mathrm{help}\:\mathrm{me} \\ $$
Commented by student work last updated on 26/Jun/20
can u help me?
$$\mathrm{can}\:\mathrm{u}\:\mathrm{help}\:\mathrm{me}? \\ $$
Commented by student work last updated on 26/Jun/20
lim_(x→0) [((f(x+1))/(f(1)))]^(1/x) =?
$$\mathrm{li}\underset{\mathrm{x}\rightarrow\mathrm{0}} {\mathrm{m}}\left[\frac{\mathrm{f}\left(\mathrm{x}+\mathrm{1}\right)}{\mathrm{f}\left(\mathrm{1}\right)}\right]^{\frac{\mathrm{1}}{\mathrm{x}}} =? \\ $$
Commented by student work last updated on 26/Jun/20
f(1)=?
$$\mathrm{f}\left(\mathrm{1}\right)=? \\ $$
Answered by mathmax by abdo last updated on 26/Jun/20
you question is not clear
$$\mathrm{you}\:\mathrm{question}\:\mathrm{is}\:\mathrm{not}\:\mathrm{clear} \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *