Menu Close

laplace-transform-L-t-sin-t-t-F-s-F-s-then-calculate-0-e-




Question Number 190420 by mnjuly1970 last updated on 02/Apr/23
              laplace  transform               −−−−−−−            L_t  {  (( sin(t ))/t)  } = F (s )                                 F (s )=  ?               then  calculate .                Ω=∫_0 ^( ∞) ((e^( −2t) sin(t ))/t) dt =?                   −−−−−−−−
laplacetransformLt{sin(t)t}=F(s)F(s)=?thencalculate.Ω=0e2tsin(t)tdt=?
Commented by mahdipoor last updated on 02/Apr/23
  L(((sin(t))/t))=L(((t−(t^3 /(3!))+(t^5 /(5!))−...)/t))=L(1−(t^2 /(3!))+(t^4 /(5!))−...)  =L(1)−(1/(3!))L(t^2 )+(1/(5!))L(t^4 )−...=  (1/s)−((2!)/(3!s^3 ))+((4!)/(5!s^5 ))−....=(1/s)−(1/(3s^3 ))+(1/(5s^5 ))−...=G(s)  G(s)=?⇒Ω=G(2)=?
L(sin(t)t)=L(tt33!+t55!t)=L(1t23!+t45!)=L(1)13!L(t2)+15!L(t4)=1s2!3!s3+4!5!s5.=1s13s3+15s5=G(s)G(s)=?Ω=G(2)=?
Commented by mnjuly1970 last updated on 02/Apr/23
  thx ... G (s )= arctan((1/s))  G(2)= arctan((1/2) )...
thxG(s)=arctan(1s)G(2)=arctan(12)
Answered by witcher3 last updated on 04/Apr/23
F(s)=Im∫_0 ^∞ t^(−1) e^(−t(s−i)) dt,s>0  F′(s)=Im∫_0 ^∞ −e^(−ts+it) dt  =Im(1/(−s+i))  =−(1/(s^2 +1))⇒F(s)=−arctan(s)+c  lim_(x→∞) F(x)=0⇒c=(π/2)  Ω=−arctan(2)+(π/2)=arctan((1/2))
F(s)=Im0t1et(si)dt,s>0F(s)=Im0ets+itdt=Im1s+i=1s2+1F(s)=arctan(s)+climFx(x)=0c=π2Ω=arctan(2)+π2=arctan(12)

Leave a Reply

Your email address will not be published. Required fields are marked *