Menu Close

LCM-a-3-5-a-3a-a-




Question Number 93982 by Rasheed.Sindhi last updated on 16/May/20
LCM(a,(3/5)a)=3a   a=?
$$\mathrm{LCM}\left({a},\frac{\mathrm{3}}{\mathrm{5}}{a}\right)=\mathrm{3}{a}\: \\ $$$${a}=? \\ $$
Commented by mr W last updated on 16/May/20
a=5b  LCM(5b,3b)=3×5b  this is true for any b≥1. therefore  a=5, 10, 15, ...
$${a}=\mathrm{5}{b} \\ $$$${LCM}\left(\mathrm{5}{b},\mathrm{3}{b}\right)=\mathrm{3}×\mathrm{5}{b} \\ $$$${this}\:{is}\:{true}\:{for}\:{any}\:{b}\geqslant\mathrm{1}.\:{therefore} \\ $$$${a}=\mathrm{5},\:\mathrm{10},\:\mathrm{15},\:… \\ $$
Commented by PRITHWISH SEN 2 last updated on 16/May/20
the qiestion cannot have any unique solution  it can be true for almost every value of a∈R  as if a=2  then LCM (2,(6/5))=((LCM of 2,6)/(HCF of 1,5)) = (6/1) = 6=3.2
$$\mathrm{the}\:\mathrm{qiestion}\:\mathrm{cannot}\:\mathrm{have}\:\mathrm{any}\:\mathrm{unique}\:\mathrm{solution} \\ $$$$\mathrm{it}\:\mathrm{can}\:\mathrm{be}\:\mathrm{true}\:\mathrm{for}\:\mathrm{almost}\:\mathrm{every}\:\mathrm{value}\:\mathrm{of}\:\mathrm{a}\in\mathbb{R} \\ $$$$\mathrm{as}\:\mathrm{if}\:\boldsymbol{\mathrm{a}}=\mathrm{2} \\ $$$$\boldsymbol{\mathrm{then}}\:\boldsymbol{\mathrm{LCM}}\:\left(\mathrm{2},\frac{\mathrm{6}}{\mathrm{5}}\right)=\frac{\mathrm{LCM}\:\mathrm{of}\:\mathrm{2},\mathrm{6}}{\mathrm{HCF}\:\mathrm{of}\:\mathrm{1},\mathrm{5}}\:=\:\frac{\mathrm{6}}{\mathrm{1}}\:=\:\mathrm{6}=\mathrm{3}.\mathrm{2} \\ $$
Commented by mr W last updated on 16/May/20
what i know is that the function  LCM applies only to two or more  integers. therefore (3/5)a should be  integer.
$${what}\:{i}\:{know}\:{is}\:{that}\:{the}\:{function} \\ $$$${LCM}\:{applies}\:{only}\:{to}\:{two}\:{or}\:{more} \\ $$$${integers}.\:{therefore}\:\frac{\mathrm{3}}{\mathrm{5}}{a}\:{should}\:{be} \\ $$$${integer}. \\ $$
Commented by PRITHWISH SEN 2 last updated on 16/May/20
LCM for two or more factors = ((LCM of numerator)/(HCF of denominator))  HCF for two or more factors = ((HCF of numerator)/(LCM of denominator))
$$\mathrm{LCM}\:\mathrm{for}\:\mathrm{two}\:\mathrm{or}\:\mathrm{more}\:\mathrm{factors}\:=\:\frac{\mathrm{LCM}\:\mathrm{of}\:\mathrm{numerator}}{\mathrm{HCF}\:\mathrm{of}\:\mathrm{denominator}} \\ $$$$\mathrm{HCF}\:\mathrm{for}\:\mathrm{two}\:\mathrm{or}\:\mathrm{more}\:\mathrm{factors}\:=\:\frac{\mathrm{HCF}\:\mathrm{of}\:\mathrm{numerator}}{\mathrm{LCM}\:\mathrm{of}\:\mathrm{denominator}} \\ $$
Commented by mr W last updated on 16/May/20
thanks sir!
$${thanks}\:{sir}! \\ $$
Commented by PRITHWISH SEN 2 last updated on 16/May/20
welcome sir.
$$\mathrm{welcome}\:\mathrm{sir}. \\ $$
Commented by Rasheed.Sindhi last updated on 16/May/20
Thank you all sirs!
$${Thank}\:{you}\:{all}\:{sirs}! \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *