Menu Close

le-give-A-n-0-pi-2-sin-2n-1-x-sinx-dx-and-B-n-0-pi-2-sin-2-nx-sin-2-x-dx-1-calculate-A-n-2-prove-that-B-n-1-B-n-A-n-1-then-find-B-n-




Question Number 29506 by abdo imad last updated on 09/Feb/18
le give  A_n = ∫_0 ^(π/2)   ((sin((2n−1)x))/(sinx))dx and B_n =∫_0 ^(π/2)  ((sin^2 (nx))/(sin^2 x))dx  1)calculate A_n   2)prove that B_(n+1) −B_n = A_(n+1) .then find B_n .
legiveAn=0π2sin((2n1)x)sinxdxandBn=0π2sin2(nx)sin2xdx1)calculateAn2)provethatBn+1Bn=An+1.thenfindBn.
Commented by abdo imad last updated on 11/Feb/18
A_(n+1) −A_n = ∫_0 ^(π/2)   ((sin(2n+1)x −sin(2n−1)x)/(sinx))dx but  sin(2n+1)x= sin(2nx)cosx +cos(2nx)sinx  sin(2n−1)x=sin(2nx)cosx −cos(2nx)sinx ⇒  sin(2n+1)x −sin(2n−1)x=2cos(2nx)sinx⇒  A_(n+1) −A_(n ) = ∫_0 ^(π/2)  2cos(2nx)dx=[(1/n)sin(2nx)]_0 ^(π/2)  =0 ∀n  A_n =A_1 = (π/2) .
An+1An=0π2sin(2n+1)xsin(2n1)xsinxdxbutsin(2n+1)x=sin(2nx)cosx+cos(2nx)sinxsin(2n1)x=sin(2nx)cosxcos(2nx)sinxsin(2n+1)xsin(2n1)x=2cos(2nx)sinxAn+1An=0π22cos(2nx)dx=[1nsin(2nx)]0π2=0nAn=A1=π2.

Leave a Reply

Your email address will not be published. Required fields are marked *