Menu Close

Length-of-interval-of-range-of-function-f-cos-2-6-sin-cos-3-sin-2-2-is-1-8-2-8-3-10-4-2-10-




Question Number 20653 by Tinkutara last updated on 30/Aug/17
Length of interval of range of function  f(θ) = cos^2  θ − 6 sin θ cos θ + 3 sin^2  θ + 2  is  (1) 8  (2) −8  (3) (√(10))  (4) 2(√(10))
Lengthofintervalofrangeoffunctionf(θ)=cos2θ6sinθcosθ+3sin2θ+2is(1)8(2)8(3)10(4)210
Answered by dioph last updated on 31/Aug/17
f(θ) = cos^2  θ−6 sin θ cos θ+3sin^2  θ+2  ⇒ f(θ) = 1+2 sin^2  θ − 3 sin 2θ + 2  ⇒ f(θ) = 1−cos 2θ − 3 sin 2θ + 3  ⇒ f(θ) = 4 − cos 2θ − 3 sin 2θ  f ′(θ) = 2sin 2θ − 6 cos 2θ  f ′(θ) = 0 ⇔ sin 2θ = 3 cos 2θ  ⇔  { ((sin 2θ = 3/(√(10)))),((cos 2θ = 1/(√(10)))) :} or  { ((sin 2θ = −3/(√(10)))),((cos 2θ = −1/(√(10)))) :}  f(θ) = 4 − (1/( (√(10)))) − (9/( (√(10)))) = 4−(√(10)) (min)  f(θ) = 4 + (1/( (√(10)))) + (9/( (√(10)))) = 4+(√(10)) (max)  range = 2(√(10))
f(θ)=cos2θ6sinθcosθ+3sin2θ+2f(θ)=1+2sin2θ3sin2θ+2f(θ)=1cos2θ3sin2θ+3f(θ)=4cos2θ3sin2θf(θ)=2sin2θ6cos2θf(θ)=0sin2θ=3cos2θ{sin2θ=3/10cos2θ=1/10or{sin2θ=3/10cos2θ=1/10f(θ)=4110910=410(min)f(θ)=4+110+910=4+10(max)range=210
Commented by dioph last updated on 31/Aug/17
I am sorry, I forgot to add 1, it is  corrected
Iamsorry,Iforgottoadd1,itiscorrected
Answered by mrW1 last updated on 31/Aug/17
f(θ) = cos^2  θ − 6 sin θ cos θ + 3 sin^2  θ + 2  f(θ) = 3 − 3 sin 2θ + 2 sin^2  θ   f(θ) = 4 − (3 sin 2θ +cos 2θ)  f(θ) = 4 − (√(10))((3/( (√(10)))) sin 2θ +(1/( (√(10))))cos 2θ)  f(θ) = 4 − (√(10))(cos α sin 2θ +sin α cos 2θ)  f(θ) = 4 − (√(10)) sin (2θ+α)  max. f(θ)=4+(√(10))  min. f(θ)=4−(√(10))  max.−min.=2(√(10))  ⇒answer (4)
f(θ)=cos2θ6sinθcosθ+3sin2θ+2f(θ)=33sin2θ+2sin2θf(θ)=4(3sin2θ+cos2θ)f(θ)=410(310sin2θ+110cos2θ)f(θ)=410(cosαsin2θ+sinαcos2θ)f(θ)=410sin(2θ+α)max.f(θ)=4+10min.f(θ)=410max.min.=210answer(4)
Commented by Tinkutara last updated on 31/Aug/17
Thank you very much Sir!
ThankyouverymuchSir!

Leave a Reply

Your email address will not be published. Required fields are marked *