Menu Close

Length-side-of-hexagonal-above-is-12-cm-Find-it-s-total-area-




Question Number 157991 by zainaltanjung last updated on 30/Oct/21
    Length side of hexagonal above is =12   cm . Find it′s total area
$$ \\ $$$$ \\ $$$$\mathrm{Length}\:\mathrm{side}\:\mathrm{of}\:\mathrm{hexagonal}\:\mathrm{above}\:\mathrm{is}\:=\mathrm{12}\: \\ $$$$\mathrm{cm}\:.\:\mathrm{Find}\:\mathrm{it}'\mathrm{s}\:\mathrm{total}\:\mathrm{area} \\ $$$$ \\ $$
Answered by Rasheed.Sindhi last updated on 30/Oct/21
Composed of  6 equilateral triangles  Area of each triangle        =(√(18.6.6.6))=6.6(√3)  Total area of hexagon             =6.6.6(√3) =216(√3) cm^2
$${Composed}\:{of}\:\:\mathrm{6}\:{equilateral}\:{triangles} \\ $$$${Area}\:{of}\:{each}\:{triangle}\: \\ $$$$\:\:\:\:\:=\sqrt{\mathrm{18}.\mathrm{6}.\mathrm{6}.\mathrm{6}}=\mathrm{6}.\mathrm{6}\sqrt{\mathrm{3}} \\ $$$${Total}\:{area}\:{of}\:{hexagon} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:=\mathrm{6}.\mathrm{6}.\mathrm{6}\sqrt{\mathrm{3}}\:=\mathrm{216}\sqrt{\mathrm{3}}\:\mathrm{cm}^{\mathrm{2}} \\ $$
Commented by zainaltanjung last updated on 30/Oct/21
it′s true brother.  The total Area=  6×(1/2)×12×12×sin 60°  =3×144×(1/2)(√3)=216(√3)
$$\mathrm{it}'\mathrm{s}\:\mathrm{true}\:\mathrm{brother}. \\ $$$$\mathrm{The}\:\mathrm{total}\:\mathrm{Area}= \\ $$$$\mathrm{6}×\frac{\mathrm{1}}{\mathrm{2}}×\mathrm{12}×\mathrm{12}×\mathrm{sin}\:\mathrm{60}° \\ $$$$=\mathrm{3}×\mathrm{144}×\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{3}}=\mathrm{216}\sqrt{\mathrm{3}} \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *