Question Number 63661 by mathmax by abdo last updated on 06/Jul/19
$${let}\:\mathrm{0}<{a}<\mathrm{1}\:{find}\:{the}\:{valueof}\:\int_{\mathrm{0}} ^{\infty} \:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt} \\ $$
Commented by mathmax by abdo last updated on 07/Jul/19
$${changement}\:{t}^{\mathrm{2}} \:={x}\:{give}\:\int_{\mathrm{0}} ^{\infty} \:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:=\int_{\mathrm{0}} ^{\infty} \:\:\frac{\left({x}^{\frac{\mathrm{1}}{\mathrm{2}}} \right)^{{a}−\mathrm{1}} }{\mathrm{1}+{x}}\frac{\mathrm{1}}{\mathrm{2}}{x}^{−\frac{\mathrm{1}}{\mathrm{2}}} {dx} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\frac{{a}−\mathrm{1}}{\mathrm{2}}−\frac{\mathrm{1}}{\mathrm{2}}} }{\mathrm{1}+{x}}{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\int_{\mathrm{0}} ^{\infty} \:\:\frac{{x}^{\frac{{a}}{\mathrm{2}}−\mathrm{1}} }{\mathrm{1}+{x}}{dx}\:=\frac{\mathrm{1}}{\mathrm{2}}\:\frac{\pi}{{sin}\left(\frac{\pi{a}}{\mathrm{2}}\right)}\:\Rightarrow \\ $$$$\int_{\mathrm{0}} ^{\infty} \:\:\:\frac{{t}^{{a}−\mathrm{1}} }{\mathrm{1}+{t}^{\mathrm{2}} }{dt}\:=\frac{\pi}{\mathrm{2}{sin}\left(\frac{\pi{a}}{\mathrm{2}}\right)}\:. \\ $$