Menu Close

let-0-lt-a-lt-b-prove-that-ln-1-a-b-ln-1-b-a-lt-ln2-2-




Question Number 80816 by ~blr237~ last updated on 06/Feb/20
let  0<a<b  prove that   ln(1+(a/b))ln(1+(b/a))< (ln2)^2
let0<a<bprovethatln(1+ab)ln(1+ba)<(ln2)2
Commented by ~blr237~ last updated on 06/Feb/20
Sir  , i look like  at (3−4) crossing you uze  A≤B and B≥C ⇒ A≤C    ??   if not ,please explain
Sir,ilooklikeat(34)crossingyouuzeABandBCAC??ifnot,pleaseexplain
Commented by mind is power last updated on 07/Feb/20
mistack sorry
mistacksorry
Answered by mr W last updated on 07/Feb/20
let x=(a/b)≠1  f(x)=ln (1+x)×ln (1+(1/x))  f′(x)=(1/(1+x))ln (1+(1/x))−(1/x^2 )×(1/(1+(1/x)))ln (1+x)  f′(x)=(1/(x(1+x)))[xln (1+(1/x))−ln (1+x)]=0  xln (1+(1/x))−ln (1+x)=0  ln (1+(1/x))^x =ln (1+x)  (1+(1/x))^x =(1+x)  ⇒x=1  f_(max) =f(1)=(ln 2)^2   ⇒f(x)≤(ln 2)^2   for x≠1:  f(x)<(ln 2)^2
letx=ab1f(x)=ln(1+x)×ln(1+1x)f(x)=11+xln(1+1x)1x2×11+1xln(1+x)f(x)=1x(1+x)[xln(1+1x)ln(1+x)]=0xln(1+1x)ln(1+x)=0ln(1+1x)x=ln(1+x)(1+1x)x=(1+x)x=1fmax=f(1)=(ln2)2f(x)(ln2)2forx1:f(x)<(ln2)2

Leave a Reply

Your email address will not be published. Required fields are marked *