Menu Close

let-0-lt-lt-pi-find-n-1-cos-n-n-2-find-n-1-sin-n-n-




Question Number 32938 by abdo imad last updated on 06/Apr/18
let 0<θ<π  find  Σ_(n=1) ^∞   ((cos(nθ))/n)  2) find Σ_(n=1) ^∞   ((sin(nθ))/n)
let0<θ<πfindn=1cos(nθ)n2)findn=1sin(nθ)n
Commented by abdo imad last updated on 09/Apr/18
let put  w(z)= Σ_(n=0) ^∞  z^n    with ∣z∣≤1 and ∈C−R we have  w(z) = (1/(1−z))   ⇒ ∫w(z)dz= −ln (1−z) ⇒  Σ_(n=0) ^∞  (z^(n+1) /(n+1)) = −ln(1−z) ⇒ Σ_(n=1) ^∞   (z^n /n) =−ln(1−z)  and for z=e^(iθ)  we get  Σ_(n=1) ^∞   (e^(iθ) /n) =−ln(1−e^(iθ) )  but  ln(1−e^(iθ) ) =ln( 1 −cosθ −i sinθ)  = ln( 2 sin^2 ((θ/2)) −2i cos((θ/2))sin((θ/2)))  =ln( −2i sin((θ/2)) e^(i(θ/2)) ) =i(θ/2) + ln(−2i) +ln(sin((θ/2)))  = ln(2) +ln(sin((θ/2))) +i (θ/2)  +ln(e^(−i(π/2)) )  =ln(2 sin((θ/2))) +i ((θ−π)/2)  ⇒Σ_(n=1) ^∞   (e^(inθ) /n)  =−ln(2sin((θ/2)))  +i ((π−θ)/2) ⇒  Σ_(n=1) ^∞   ((cos(nθ))/n) =−ln(2sin((θ/2)))  and  Σ_(n=1) ^∞    ((sin(nθ))/n) = ((π−θ)/2)  .
letputw(z)=n=0znwithz∣⩽1andCRwehavew(z)=11zw(z)dz=ln(1z)n=0zn+1n+1=ln(1z)n=1znn=ln(1z)andforz=eiθwegetn=1eiθn=ln(1eiθ)butln(1eiθ)=ln(1cosθisinθ)=ln(2sin2(θ2)2icos(θ2)sin(θ2))=ln(2isin(θ2)eiθ2)=iθ2+ln(2i)+ln(sin(θ2))=ln(2)+ln(sin(θ2))+iθ2+ln(eiπ2)=ln(2sin(θ2))+iθπ2n=1einθn=ln(2sin(θ2))+iπθ2n=1cos(nθ)n=ln(2sin(θ2))andn=1sin(nθ)n=πθ2.
Commented by prof Abdo imad last updated on 09/Apr/18
Σ_(n=1) ^∞    (e^(inθ) /n) = −ln(1−e^(iθ) ) .
n=1einθn=ln(1eiθ).

Leave a Reply

Your email address will not be published. Required fields are marked *