Question Number 32938 by abdo imad last updated on 06/Apr/18
$${let}\:\mathrm{0}<\theta<\pi\:\:{find}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{cos}\left({n}\theta\right)}{{n}} \\ $$$$\left.\mathrm{2}\right)\:{find}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{sin}\left({n}\theta\right)}{{n}} \\ $$
Commented by abdo imad last updated on 09/Apr/18
$${let}\:{put}\:\:{w}\left({z}\right)=\:\sum_{{n}=\mathrm{0}} ^{\infty} \:{z}^{{n}} \:\:\:{with}\:\mid{z}\mid\leqslant\mathrm{1}\:{and}\:\in{C}−{R}\:{we}\:{have} \\ $$$${w}\left({z}\right)\:=\:\frac{\mathrm{1}}{\mathrm{1}−{z}}\:\:\:\Rightarrow\:\int{w}\left({z}\right){dz}=\:−{ln}\:\left(\mathrm{1}−{z}\right)\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{0}} ^{\infty} \:\frac{{z}^{{n}+\mathrm{1}} }{{n}+\mathrm{1}}\:=\:−{ln}\left(\mathrm{1}−{z}\right)\:\Rightarrow\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{z}^{{n}} }{{n}}\:=−{ln}\left(\mathrm{1}−{z}\right) \\ $$$${and}\:{for}\:{z}={e}^{{i}\theta} \:{we}\:{get}\:\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{e}^{{i}\theta} }{{n}}\:=−{ln}\left(\mathrm{1}−{e}^{{i}\theta} \right) \\ $$$${but}\:\:{ln}\left(\mathrm{1}−{e}^{{i}\theta} \right)\:={ln}\left(\:\mathrm{1}\:−{cos}\theta\:−{i}\:{sin}\theta\right) \\ $$$$=\:{ln}\left(\:\mathrm{2}\:{sin}^{\mathrm{2}} \left(\frac{\theta}{\mathrm{2}}\right)\:−\mathrm{2}{i}\:{cos}\left(\frac{\theta}{\mathrm{2}}\right){sin}\left(\frac{\theta}{\mathrm{2}}\right)\right) \\ $$$$={ln}\left(\:−\mathrm{2}{i}\:{sin}\left(\frac{\theta}{\mathrm{2}}\right)\:{e}^{{i}\frac{\theta}{\mathrm{2}}} \right)\:={i}\frac{\theta}{\mathrm{2}}\:+\:{ln}\left(−\mathrm{2}{i}\right)\:+{ln}\left({sin}\left(\frac{\theta}{\mathrm{2}}\right)\right) \\ $$$$=\:{ln}\left(\mathrm{2}\right)\:+{ln}\left({sin}\left(\frac{\theta}{\mathrm{2}}\right)\right)\:+{i}\:\frac{\theta}{\mathrm{2}}\:\:+{ln}\left({e}^{−{i}\frac{\pi}{\mathrm{2}}} \right) \\ $$$$={ln}\left(\mathrm{2}\:{sin}\left(\frac{\theta}{\mathrm{2}}\right)\right)\:+{i}\:\frac{\theta−\pi}{\mathrm{2}}\:\:\Rightarrow\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{e}^{{in}\theta} }{{n}} \\ $$$$=−{ln}\left(\mathrm{2}{sin}\left(\frac{\theta}{\mathrm{2}}\right)\right)\:\:+{i}\:\frac{\pi−\theta}{\mathrm{2}}\:\Rightarrow \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\frac{{cos}\left({n}\theta\right)}{{n}}\:=−{ln}\left(\mathrm{2}{sin}\left(\frac{\theta}{\mathrm{2}}\right)\right)\:\:{and} \\ $$$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{sin}\left({n}\theta\right)}{{n}}\:=\:\frac{\pi−\theta}{\mathrm{2}}\:\:. \\ $$$$ \\ $$
Commented by prof Abdo imad last updated on 09/Apr/18
$$\sum_{{n}=\mathrm{1}} ^{\infty} \:\:\:\frac{{e}^{{in}\theta} }{{n}}\:=\:−{ln}\left(\mathrm{1}−{e}^{{i}\theta} \right)\:. \\ $$