Menu Close

let-0-lt-p-lt-1-and-x-gt-0-prove-that-x-2-1-p-1-p-x-p-p-x-




Question Number 92235 by ~blr237~ last updated on 05/May/20
let  0<p<1  and  x>0  prove that    x^2 ≤ (1−p)(  ^((1−p)) (√x) ) +p (^p (√x))
$${let}\:\:\mathrm{0}<{p}<\mathrm{1}\:\:{and}\:\:{x}>\mathrm{0} \\ $$$${prove}\:{that}\:\:\:\:{x}^{\mathrm{2}} \leqslant\:\left(\mathrm{1}−{p}\right)\left(\:\:\:^{\left(\mathrm{1}−{p}\right)} \sqrt{{x}}\:\right)\:+{p}\:\left(\:^{{p}} \sqrt{{x}}\right) \\ $$$$ \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *