Menu Close

let-0-lt-u-0-lt-1-and-u-n-1-1-u-n-2-study-the-convergence-of-u-n-




Question Number 37818 by prof Abdo imad last updated on 17/Jun/18
let 0<u_0 <1  and u_(n+1) =(√((1+u_n )/2))  study the convergence of u_n
let0<u0<1andun+1=1+un2studytheconvergenceofun
Commented by math khazana by abdo last updated on 19/Jun/18
let f(x) =(√((1+x)/2))  with x≥0   f(x)=x ⇒((1+x)/2) =x^2  ⇒1+x =2x^2  ⇒  2x^2 −x−1 =0   Δ =1+8 =9  x_1 =((1+3)/4) =1  and x_2 =((1−3)/4) =−(1/2)  we have  u_(n+1) =f(u_n ) and f is continue ⇒lim_(n→+∞) u_n =1  let find another form of u_n  we put  u_0 =cosα  ⇒ u_1 =(√((1+cos(α))/2))  =cos((α/2))   let prove that u_n = cos((α/2^n ))  relation true for n=0  let suppose u_n =cos((α/2^n )) ⇒  u_(n+1) =(√((1+u_n )/2)) =(√((1+cos((α/2^n )))/2))  =cos((α/2^(n+1) )) . its now clear that  lim_(n→+∞)  u_n =1 .
letf(x)=1+x2withx0f(x)=x1+x2=x21+x=2x22x2x1=0Δ=1+8=9x1=1+34=1andx2=134=12wehaveun+1=f(un)andfiscontinuelimn+un=1letfindanotherformofunweputu0=cosαu1=1+cos(α)2=cos(α2)letprovethatun=cos(α2n)relationtrueforn=0letsupposeun=cos(α2n)un+1=1+un2=1+cos(α2n)2=cos(α2n+1).itsnowclearthatlimn+un=1.

Leave a Reply

Your email address will not be published. Required fields are marked *