Menu Close

let-0-lt-x-lt-1-and-x-0-t-x-1-e-t-dt-1-prove-that-x-1-x-pi-sin-pix-compliments-formulae-2-calculate-n-and-n-1-2-with-n-from-N-




Question Number 42870 by maxmathsup by imad last updated on 03/Sep/18
let 0<x<1  and Γ(x) =∫_0 ^∞  t^(x−1)  e^(−t)  dt   1) prove that Γ(x).Γ(1−x) =(π/(sin(πx)))   (compliments formulae)  2) calculate Γ(n) and Γ(n+(1/2)) with n from N.
$${let}\:\mathrm{0}<{x}<\mathrm{1}\:\:{and}\:\Gamma\left({x}\right)\:=\int_{\mathrm{0}} ^{\infty} \:{t}^{{x}−\mathrm{1}} \:{e}^{−{t}} \:{dt}\: \\ $$$$\left.\mathrm{1}\right)\:{prove}\:{that}\:\Gamma\left({x}\right).\Gamma\left(\mathrm{1}−{x}\right)\:=\frac{\pi}{{sin}\left(\pi{x}\right)}\:\:\:\left({compliments}\:{formulae}\right) \\ $$$$\left.\mathrm{2}\right)\:{calculate}\:\Gamma\left({n}\right)\:{and}\:\Gamma\left({n}+\frac{\mathrm{1}}{\mathrm{2}}\right)\:{with}\:{n}\:{from}\:{N}. \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *