Menu Close

let-0-pi-calculate-0-pi-2-dx-2-cos-chx-




Question Number 30775 by abdo imad last updated on 25/Feb/18
letα ∈]0,π[  calculate ∫_0 ^(π/2)    (dx/(2(cosα +chx))) .
letα]0,π[calculate0π2dx2(cosα+chx).
Commented by prof Abdo imad last updated on 25/Feb/18
we have I = ∫_0 ^(π/2)   (dx/(2(cosα +((e^x  + e^(−x) )/2))))  = ∫_0 ^(π/2)       (dx/(2cosα +e^x  +e^(−x) ))  the ch. e^x =t  I = ∫_1 ^e^(π/2)           (1/(2cosα +t +(1/t)))(dt/t)  = ∫_1 ^e^(π/2)         (dt/(2t cosα +t^2  +1))=∫_1 ^e^(π/2)        (dt/(t^2  +2tcosα +1))  = ∫_0 ^e^(π/2)      (dt/((t +cosα)^2  +sin^2 α)) let use the ch.  t+cosα =u sinα ⇒u =(1/(sinα))(t +cosα)  I= ∫_(cotan(α)) ^((e^(π/2)  +cosα)/(sinα))          ((sinα du)/(sin^2 α(1+u^2 )))  = (1/(sinα)) [arctanu]_(cotanα) ^((e^(π/2)  +cosα)/(sinα))   =(1/(sinα))( arctan(  ((e^(π/2)  +cosα)/(sinα))) −arctan(cotanα)).
wehaveI=0π2dx2(cosα+ex+ex2)=0π2dx2cosα+ex+exthech.ex=tI=1eπ212cosα+t+1tdtt=1eπ2dt2tcosα+t2+1=1eπ2dtt2+2tcosα+1=0eπ2dt(t+cosα)2+sin2αletusethech.t+cosα=usinαu=1sinα(t+cosα)I=cotan(α)eπ2+cosαsinαsinαdusin2α(1+u2)=1sinα[arctanu]cotanαeπ2+cosαsinα=1sinα(arctan(eπ2+cosαsinα)arctan(cotanα)).
Answered by sma3l2996 last updated on 25/Feb/18
A=∫_0 ^(π/2) (dx/(2(cosα+chx)))  let  t=th(x/2)⇒dt=(1/2)(1−th^2 (x/2))dx  dx=(2/(1−t^2 ))dt  ch(x)=2ch^2 (x/2)−1=(2/(1−th^2 (x/2)))−1=(2/(1−t^2 ))−1=((1+t^2 )/(1−t^2 ))  A=∫_0 ^(th(π/4)) (1/(2(cosα+((1+t^2 )/(1−t^2 )))))×(((2dt)/(1−t^2 )))  =∫_0 ^(th(π/4)) (dt/((1−t^2 )cosα+1+t^2 ))=∫_0 ^(th(π/4)) (dt/(t^2 (1−cosα)+1+cosα))  A=∫_0 ^(th(π/4)) (dt/((1+cosα)((((1−cosα)/(1+cosα)))t^2 +1)))  let′s put  u=(((1−cosα)/(1+cosα)))^(1/2) t⇒dt=(((1+cosα)/(1−cosα)))du  A=(1/((1−cosα)^(1/2) (1+cosα)^(1/2) ))∫_0 ^a (du/(u^2 +1))  A=(1/((1−cos^2 α)^(1/2) ))×[arctan(((1−cosα)/(sinα))t)]_0 ^(th(π/4))   A=(1/(sinα))arctan(((1−cosα)/(sinα))th(π/4))
A=0π/2dx2(cosα+chx)lett=th(x/2)dt=12(1th2(x/2))dxdx=21t2dtch(x)=2ch2(x/2)1=21th2(x/2)1=21t21=1+t21t2A=0th(π/4)12(cosα+1+t21t2)×(2dt1t2)=0th(π/4)dt(1t2)cosα+1+t2=0th(π/4)dtt2(1cosα)+1+cosαA=0th(π/4)dt(1+cosα)((1cosα1+cosα)t2+1)letsputu=(1cosα1+cosα)1/2tdt=(1+cosα1cosα)duA=1(1cosα)1/2(1+cosα)1/20aduu2+1A=1(1cos2α)1/2×[arctan(1cosαsinαt)]0th(π/4)A=1sinαarctan(1cosαsinαth(π/4))

Leave a Reply

Your email address will not be published. Required fields are marked *