Menu Close

let-0-pi-calculate-0-pi-2-dx-2-cos-chx-




Question Number 30775 by abdo imad last updated on 25/Feb/18
letα ∈]0,π[  calculate ∫_0 ^(π/2)    (dx/(2(cosα +chx))) .
$$\left.{let}\alpha\:\in\right]\mathrm{0},\pi\left[\:\:{calculate}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\frac{{dx}}{\mathrm{2}\left({cos}\alpha\:+{chx}\right)}\:.\right. \\ $$
Commented by prof Abdo imad last updated on 25/Feb/18
we have I = ∫_0 ^(π/2)   (dx/(2(cosα +((e^x  + e^(−x) )/2))))  = ∫_0 ^(π/2)       (dx/(2cosα +e^x  +e^(−x) ))  the ch. e^x =t  I = ∫_1 ^e^(π/2)           (1/(2cosα +t +(1/t)))(dt/t)  = ∫_1 ^e^(π/2)         (dt/(2t cosα +t^2  +1))=∫_1 ^e^(π/2)        (dt/(t^2  +2tcosα +1))  = ∫_0 ^e^(π/2)      (dt/((t +cosα)^2  +sin^2 α)) let use the ch.  t+cosα =u sinα ⇒u =(1/(sinα))(t +cosα)  I= ∫_(cotan(α)) ^((e^(π/2)  +cosα)/(sinα))          ((sinα du)/(sin^2 α(1+u^2 )))  = (1/(sinα)) [arctanu]_(cotanα) ^((e^(π/2)  +cosα)/(sinα))   =(1/(sinα))( arctan(  ((e^(π/2)  +cosα)/(sinα))) −arctan(cotanα)).
$${we}\:{have}\:{I}\:=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{dx}}{\mathrm{2}\left({cos}\alpha\:+\frac{{e}^{{x}} \:+\:{e}^{−{x}} }{\mathrm{2}}\right)} \\ $$$$=\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\:\:\:\:\frac{{dx}}{\mathrm{2}{cos}\alpha\:+{e}^{{x}} \:+{e}^{−{x}} }\:\:{the}\:{ch}.\:{e}^{{x}} ={t} \\ $$$${I}\:=\:\int_{\mathrm{1}} ^{{e}^{\frac{\pi}{\mathrm{2}}} } \:\:\:\:\:\:\:\:\:\frac{\mathrm{1}}{\mathrm{2}{cos}\alpha\:+{t}\:+\frac{\mathrm{1}}{{t}}}\frac{{dt}}{{t}} \\ $$$$=\:\int_{\mathrm{1}} ^{{e}^{\frac{\pi}{\mathrm{2}}} } \:\:\:\:\:\:\:\frac{{dt}}{\mathrm{2}{t}\:{cos}\alpha\:+{t}^{\mathrm{2}} \:+\mathrm{1}}=\int_{\mathrm{1}} ^{{e}^{\frac{\pi}{\mathrm{2}}} } \:\:\:\:\:\:\frac{{dt}}{{t}^{\mathrm{2}} \:+\mathrm{2}{tcos}\alpha\:+\mathrm{1}} \\ $$$$=\:\int_{\mathrm{0}} ^{{e}^{\frac{\pi}{\mathrm{2}}} } \:\:\:\:\frac{{dt}}{\left({t}\:+{cos}\alpha\right)^{\mathrm{2}} \:+{sin}^{\mathrm{2}} \alpha}\:{let}\:{use}\:{the}\:{ch}. \\ $$$${t}+{cos}\alpha\:={u}\:{sin}\alpha\:\Rightarrow{u}\:=\frac{\mathrm{1}}{{sin}\alpha}\left({t}\:+{cos}\alpha\right) \\ $$$${I}=\:\int_{{cotan}\left(\alpha\right)} ^{\frac{{e}^{\frac{\pi}{\mathrm{2}}} \:+{cos}\alpha}{{sin}\alpha}} \:\:\:\:\:\:\:\:\:\frac{{sin}\alpha\:{du}}{{sin}^{\mathrm{2}} \alpha\left(\mathrm{1}+{u}^{\mathrm{2}} \right)} \\ $$$$=\:\frac{\mathrm{1}}{{sin}\alpha}\:\left[{arctanu}\right]_{{cotan}\alpha} ^{\frac{{e}^{\frac{\pi}{\mathrm{2}}} \:+{cos}\alpha}{{sin}\alpha}} \\ $$$$=\frac{\mathrm{1}}{{sin}\alpha}\left(\:{arctan}\left(\:\:\frac{{e}^{\frac{\pi}{\mathrm{2}}} \:+{cos}\alpha}{{sin}\alpha}\right)\:−{arctan}\left({cotan}\alpha\right)\right). \\ $$$$ \\ $$
Answered by sma3l2996 last updated on 25/Feb/18
A=∫_0 ^(π/2) (dx/(2(cosα+chx)))  let  t=th(x/2)⇒dt=(1/2)(1−th^2 (x/2))dx  dx=(2/(1−t^2 ))dt  ch(x)=2ch^2 (x/2)−1=(2/(1−th^2 (x/2)))−1=(2/(1−t^2 ))−1=((1+t^2 )/(1−t^2 ))  A=∫_0 ^(th(π/4)) (1/(2(cosα+((1+t^2 )/(1−t^2 )))))×(((2dt)/(1−t^2 )))  =∫_0 ^(th(π/4)) (dt/((1−t^2 )cosα+1+t^2 ))=∫_0 ^(th(π/4)) (dt/(t^2 (1−cosα)+1+cosα))  A=∫_0 ^(th(π/4)) (dt/((1+cosα)((((1−cosα)/(1+cosα)))t^2 +1)))  let′s put  u=(((1−cosα)/(1+cosα)))^(1/2) t⇒dt=(((1+cosα)/(1−cosα)))du  A=(1/((1−cosα)^(1/2) (1+cosα)^(1/2) ))∫_0 ^a (du/(u^2 +1))  A=(1/((1−cos^2 α)^(1/2) ))×[arctan(((1−cosα)/(sinα))t)]_0 ^(th(π/4))   A=(1/(sinα))arctan(((1−cosα)/(sinα))th(π/4))
$${A}=\int_{\mathrm{0}} ^{\pi/\mathrm{2}} \frac{{dx}}{\mathrm{2}\left({cos}\alpha+{chx}\right)} \\ $$$${let}\:\:{t}={th}\left({x}/\mathrm{2}\right)\Rightarrow{dt}=\frac{\mathrm{1}}{\mathrm{2}}\left(\mathrm{1}−{th}^{\mathrm{2}} \left({x}/\mathrm{2}\right)\right){dx} \\ $$$${dx}=\frac{\mathrm{2}}{\mathrm{1}−{t}^{\mathrm{2}} }{dt} \\ $$$${ch}\left({x}\right)=\mathrm{2}{ch}^{\mathrm{2}} \left({x}/\mathrm{2}\right)−\mathrm{1}=\frac{\mathrm{2}}{\mathrm{1}−{th}^{\mathrm{2}} \left({x}/\mathrm{2}\right)}−\mathrm{1}=\frac{\mathrm{2}}{\mathrm{1}−{t}^{\mathrm{2}} }−\mathrm{1}=\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}−{t}^{\mathrm{2}} } \\ $$$${A}=\int_{\mathrm{0}} ^{{th}\left(\pi/\mathrm{4}\right)} \frac{\mathrm{1}}{\mathrm{2}\left({cos}\alpha+\frac{\mathrm{1}+{t}^{\mathrm{2}} }{\mathrm{1}−{t}^{\mathrm{2}} }\right)}×\left(\frac{\mathrm{2}{dt}}{\mathrm{1}−{t}^{\mathrm{2}} }\right) \\ $$$$=\int_{\mathrm{0}} ^{{th}\left(\pi/\mathrm{4}\right)} \frac{{dt}}{\left(\mathrm{1}−{t}^{\mathrm{2}} \right){cos}\alpha+\mathrm{1}+{t}^{\mathrm{2}} }=\int_{\mathrm{0}} ^{{th}\left(\pi/\mathrm{4}\right)} \frac{{dt}}{{t}^{\mathrm{2}} \left(\mathrm{1}−{cos}\alpha\right)+\mathrm{1}+{cos}\alpha} \\ $$$${A}=\int_{\mathrm{0}} ^{{th}\left(\pi/\mathrm{4}\right)} \frac{{dt}}{\left(\mathrm{1}+{cos}\alpha\right)\left(\left(\frac{\mathrm{1}−{cos}\alpha}{\mathrm{1}+{cos}\alpha}\right){t}^{\mathrm{2}} +\mathrm{1}\right)} \\ $$$${let}'{s}\:{put}\:\:{u}=\left(\frac{\mathrm{1}−{cos}\alpha}{\mathrm{1}+{cos}\alpha}\right)^{\mathrm{1}/\mathrm{2}} {t}\Rightarrow{dt}=\left(\frac{\mathrm{1}+{cos}\alpha}{\mathrm{1}−{cos}\alpha}\right){du} \\ $$$${A}=\frac{\mathrm{1}}{\left(\mathrm{1}−{cos}\alpha\right)^{\mathrm{1}/\mathrm{2}} \left(\mathrm{1}+{cos}\alpha\right)^{\mathrm{1}/\mathrm{2}} }\int_{\mathrm{0}} ^{{a}} \frac{{du}}{{u}^{\mathrm{2}} +\mathrm{1}} \\ $$$${A}=\frac{\mathrm{1}}{\left(\mathrm{1}−{cos}^{\mathrm{2}} \alpha\right)^{\mathrm{1}/\mathrm{2}} }×\left[{arctan}\left(\frac{\mathrm{1}−{cos}\alpha}{{sin}\alpha}{t}\right)\right]_{\mathrm{0}} ^{{th}\left(\pi/\mathrm{4}\right)} \\ $$$${A}=\frac{\mathrm{1}}{{sin}\alpha}{arctan}\left(\frac{\mathrm{1}−{cos}\alpha}{{sin}\alpha}{th}\left(\pi/\mathrm{4}\right)\right) \\ $$$$ \\ $$

Leave a Reply

Your email address will not be published. Required fields are marked *