let-0-pi-calculate-0-pi-2-dx-2-cos-chx- Tinku Tara June 4, 2023 Integration 0 Comments FacebookTweetPin Question Number 30775 by abdo imad last updated on 25/Feb/18 letα∈]0,π[calculate∫0π2dx2(cosα+chx). Commented by prof Abdo imad last updated on 25/Feb/18 wehaveI=∫0π2dx2(cosα+ex+e−x2)=∫0π2dx2cosα+ex+e−xthech.ex=tI=∫1eπ212cosα+t+1tdtt=∫1eπ2dt2tcosα+t2+1=∫1eπ2dtt2+2tcosα+1=∫0eπ2dt(t+cosα)2+sin2αletusethech.t+cosα=usinα⇒u=1sinα(t+cosα)I=∫cotan(α)eπ2+cosαsinαsinαdusin2α(1+u2)=1sinα[arctanu]cotanαeπ2+cosαsinα=1sinα(arctan(eπ2+cosαsinα)−arctan(cotanα)). Answered by sma3l2996 last updated on 25/Feb/18 A=∫0π/2dx2(cosα+chx)lett=th(x/2)⇒dt=12(1−th2(x/2))dxdx=21−t2dtch(x)=2ch2(x/2)−1=21−th2(x/2)−1=21−t2−1=1+t21−t2A=∫0th(π/4)12(cosα+1+t21−t2)×(2dt1−t2)=∫0th(π/4)dt(1−t2)cosα+1+t2=∫0th(π/4)dtt2(1−cosα)+1+cosαA=∫0th(π/4)dt(1+cosα)((1−cosα1+cosα)t2+1)let′sputu=(1−cosα1+cosα)1/2t⇒dt=(1+cosα1−cosα)duA=1(1−cosα)1/2(1+cosα)1/2∫0aduu2+1A=1(1−cos2α)1/2×[arctan(1−cosαsinαt)]0th(π/4)A=1sinαarctan(1−cosαsinαth(π/4)) Terms of Service Privacy Policy Contact: info@tinkutara.com FacebookTweetPin Post navigation Previous Previous post: 4-15-x-4-15-x-62-x-Next Next post: find-0-1-xdx-1-x-2-1-x-4- Leave a Reply Cancel replyYour email address will not be published. Required fields are marked *Comment * Name * Save my name, email, and website in this browser for the next time I comment.